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1Introduction

Infant and child mortality in Africa is higher than in any other continent (see Map 1). 
In particular, West African countries experience mortality two to three times higher 
than neighboring countries in northern Africa and in much of southern Africa. Still, 
there is considerable heterogeneity within the region. For example, Niger’s infant mor-
tality rate is more than double that of Ghana. Subnationally, even when mapped at a 
coarse resolution, rates diff er by as much as a factor of four (see Map 2). Th e countries 
also show diff erential trends in levels and age patterns of childhood mortality. Further, 
while it appears that some countries have experienced signifi cant declines in recent 
mortality (e.g., Niger), others appear to have experienced a reversal in long-term down-
ward trend (e.g., Burkina Faso).¹ Because of the inherent complexities associated with 
analyzing trends from cross-sectional data, this report will focus on the major determi-
nants of mortality in the ten years preceding the period 1997–2001. Its contribution is 
a consideration of a broad class of spatial covariates.

Several individual- and household-level factors have been identifi ed as key deter-
minants of infant and child survival. Th ese include maternal education (Agha, 2000; 
McMurray, 1997; Rao et al., 1997; Root, 1997; Trussell and Hammerslough, 1983) and 
the pace of childbearing (Agha, 2000; Boerma and Bicego, 1992; Gupta and Baghel, 
1999; Rao et al., 1997; Root, 1997; Whitworth and Stephenson, 2002). Many studies 
indicate that environmental or geographic factors also play an important role. Th ese 
include, for example, population density (Root, 1997), climate (Curtis and Hossain, 
1998; Patz et al., 2000; Pitt and Sigle, 1997; Ronsmans, 1995), disease environment 
(Root, 1999), and urban residence (Woods, 2003). However, few studies have been 
able to incorporate potential environmental factors that are explicitly spatial, that is, 
derived from geographic databases. Spatial variables include simple constructs, such 
as distances from households or communities (e.g., to the nearest clinic or city) and 
environmental characteristics that have their own geographic boundaries (e.g., types of 
farming system or land cover). Geographic databases often provide information (via 
station measurements, satellites, and other sources) that would otherwise be too costly 
to obtain through the survey mechanism. Th is study makes further inroads by incorpo-
rating several new or previously hard-to-integrate sources of spatial data. 

Until recently, environmental and other geographic data were not readily applicable 
to analyses of childhood mortality. However, signifi cant improvements are starting to 
take place. First, spatial data are generally becoming more available, with improved 
coverage, quality, and variety. Second, since late 1996, the Demographic and Health 
Surveys (DHS) has consistently recorded the geographical location of each cluster of 
surveyed households with handheld Global Positioning System (GPS) units. Th is in-
formation at the cluster level permits linkage between DHS determinants of infant and 
child mortality and information from other data sets.

Th e primary objective of this report is to explore and draw attention to the eff ects of 

Information from 
DHS surveys at the 
cluster level permits 
linkage between 
DHS determinants 
of infant and child 
mortality and infor-
mation from other 
data sets.

¹ Short-term variation in mortality based on survey data needs to be evaluated with caution. 
Th is is the subject of an ongoing study by Korenromp and colleagues (forthcoming). 
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a largely unexplored body of environmental information on infant and child mortality. 
Th e underlying motivation is to account for some portion of the variance that has not 
been explained by the traditional set of socioeconomic and biodemographic determi-
nants of childhood mortality. 

1.1. Rationale
Mosley and Chen’s (1984) widely accepted analytical framework is based on the as-
sertion that socioeconomic factors infl uence mortality through biological mechanisms 
called proximate determinants. Th e socioeconomic factors in the basic framework in-
clude individual, household, and community-level variables, the latter including macro-
environmental factors. Factors such as climate, rainfall, and soil are especially perti-
nent to children’s survival in sub-Saharan Africa because widespread poverty leaves 
the population highly vulnerable to fl uctuations in the availability of food and water, 
the transmission of infectious and vector-borne disease, and even the amount of time a 
mother spends working versus her time devoted to child care (Watson et al., 1997). 

Th is study examines the role of nonbiological variables in predicting childhood mor-
tality, with an emphasis on environmental and spatially-determined variables. We con-
trol for a variety of proximate determinants including several maternal and demographic 
factors. Because our goal is to infer the causal role of socioeconomic and environmental 
characteristics, it is beyond the scope of this study to analyze the direct, biomedical 
causes of death such as complications of birth, malnutrition, and specifi c infections 
such as diarrhea, HIV, and acute respiratory infection. Th ese biological causes of death 
are believed to be correlated with social factors (Cramer, 1987; Schultz, 1993). 

1.2 Evidence from the Literature
Th e impact of proximate factors, and socioeconomic and environmental factors acting 
directly or indirectly through them, on childhood mortality has been studied for several 
decades. Some factors have been examined much more thoroughly than others, and the 
following review is intended to guide the choice of variables for our analysis rather than 
provide an exhaustive overview. 

Proximate Determinants
Th e proximate determinants of child mortality include maternal and demographic fac-
tors, nutrition, illness, and injury (Mosley and Chen, 1984). Maternal risk factors are 
more closely related to neonatal or early infant deaths because they are associated with 
premature and low birth weight infants and delivery complications. One of the most 
important maternal factors found to be related to childhood mortality is the pace of 
childbearing (Hobcraft et al., 1985; Rutstein, 1984). In particular, short preceding birth 
intervals are believed to increase an infant’s risk of mortality because the mother’s nu-
tritional reserves have not fully recovered from the previous birth. Short birth intervals 
may aff ect the older child as well by creating competition between young siblings for 
the mother’s resources (Boerma and Bicego 1992). 

Two other important maternal factors are the mother’s age at birth and the birth 
order. Results from a proportional hazards model using data from the Malawi DHS 
survey show that both of these eff ects are important in determining risks primarily dur-
ing infancy (Manda, 1999). In sub-Saharan Africa, where women marry at a young age, 
fi rst births are associated with very young mothers. Th eory suggests that these women’s 
children carry a higher risk of death because young, fi rst parity mothers may not have 
reached their full physical and reproductive maturity (Zenger, 1992). Findings regard-
ing children of older mothers and mothers of high parity vary more, but because of the 
increased risk of delivering a genetically impaired infant later in life, these children are 
also likely to carry higher risk of death (Sullivan et al., 1994).

Factors such as 
climate, rainfall, 

and soil are espe-
cially pertinent to 

children’s survival in 
sub-Saharan Africa.
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Demographic factors such as male sex (Sullivan et al., 1994), multiple births (Pi-
son et al., 1989), and previous child deaths (Majumder et al., 1997; Mturi and Curtis, 
1995) are associated with a high risk of infant death. Infant boys, especially during the 
neonatal period, have a higher risk of death than females. Early infant death is also 
signifi cantly higher for multiple births, mainly because multiple births are most likely 
to be premature and/or low birth weight. If more than one birth survives delivery then 
there is competition for breast milk and the mother’s resources. 

Nutrition, illness, and injury are common proximate determinants of childhood 
death. Although these factors are not included in this analysis, they cannot be over-
looked as key factors in predicting childhood mortality. Numerous studies examining 
mortality outcomes have researched mother and child nutritional status as direct or 
indirect causes of infant and child deaths through association with specifi c diseases 
(Onis, 2000; Rice et al., 2000; Rutstein, 2000). 

HIV/AIDS, a major epidemic in sub-Saharan Africa, is not without repercussions 
on childhood mortality. Adetunji (2000) fi nds that improvements in under-fi ve mor-
tality are reversed in countries with high adult HIV prevalence (≥5 percent). At the 
end of 2001, several West African countries in this study had estimated adult preva-
lence between 5 percent and 10 percent (Burkina Faso, Côte d’Ivoire, and Togo), and 
Cameroon had a prevalence level of 11.8 percent. Th e remaining four countries had 
estimated prevalence under 5 percent (Benin, Ghana, Mali, and Senegal) (UNAIDS, 
2002). About 25 to 35 percent of children born to HIV-positive mothers are also in-
fected with the virus, and the median age at death for HIV-positive children in Africa 
is about two years (Boerma et al., 1998). Mortality rates for children of HIV-infected 
mothers are therefore much higher—two to fi ve times higher—than those for children 
of HIV-negative mothers. Perhaps even more important are the indirect eff ects of adult 
HIV on child mortality. Elevated adult HIV prevalence rates also increase the risk of 
death for HIV-negative infants and children because a parent’s death leaves them vul-
nerable. Th e death of an HIV-positive parent or guardian means a loss of income and 
an orphan’s time and energy are likely diverted from school to helping maintain the 
household. Unfortunately, precise eff ects of the disease on childhood mortality levels 
are diffi  cult to capture, not only because of these indirect eff ects, but also because de-
tailed information on children of mothers who died of HIV (as well as other causes) 
have often been omitted from household surveys including the DHS surveys.

Socioeconomic Determinants
Unlike the endogenous maternal and demographic factors that substantially increase 
an infant’s risk of death, the eff ects of socioeconomic variables are enhanced as the 
child gets older (Manda, 1999). Th e reason usually cited for this is that a greater pro-
portion of child deaths between age 1 and 4 years are due to exogenous factors over 
which parents potentially have control. Parents’ education, access to health services, and 
the household environment represent a few of these factors.

Maternal education has consistently been observed to have a strong impact on 
child survival (Agha, 2000; McMurray, 1997; Rao et al., 1997; Root, 1997; Trussell 
and Hammerslough, 1983). Paternal education has also emerged as a signifi cant factor 
(Majumder et al., 1997). In part, maternal education is positively correlated with using 
modern health services including prenatal care (Shakhatreh, 1996). More education is 
needed to counteract child mortality than infant mortality, presumably because older 
children are more reliant on health facilities, clean hygiene practices, and quantity and 
variety of solid food—factors that better educated parents are more likely to seek out 
and gain access to (Boerma, 1996).

Th e use of health services, especially prenatal and delivery care, which is often a func-
tion of other socioeconomic factors, also reduces infant mortality (Ahonsi, 1995; Forste, 

Maternal education 
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1994; Gaminiratme, 1991). Th e use of preventive health services, such as immunization 
programs, has been determined to infl uence survival later in childhood (Ahonsi, 1995; 
Diamond, 2000). 

Th e household environment, measured by factors such as source of drinking water 
and toilet facilities, provides important determinants covarying with older children’s 
chances of survival (Esrey and Habicht, 1986; Merrick, 1985; Woldemicael, 2000). 
Th ese factors are important not only for their direct eff ect on child survival, but because 
they may also indicate the overall resource level of a child’s family. Poverty in and of 
itself is a key determinant of infant and child mortality (Gupta and Baghel, 1999; Hus-
sain et al., 1999).

In addition to socioeconomic factors, cultural factors may infl uence mortality. So-
ciety’s beliefs about disease, for example, may result in taboos or ritualistic treatments 
whose therapeutic eff ects are not supported by modern medicine (Fabrega, 1972). Cul-
tural beliefs may lead to breastfeeding practices that are detrimental to the infant’s 
growth (Lesthaeghe, 1989; van de Walle and van de Walle, 1991). Basu (1997) con-
tends that behavioral underinvestment may underlie the biological determinants of 
mortality. Cultural factors such as these and others are important in understanding 
childhood mortality, but because they are diffi  cult to quantify they are not explicitly 
considered in the present analysis.

Spatially-relevant Factors 
Although demographic analyses are almost always place-based, much analysis is spatial-
ly general. Urban-rural distinctions are common but are nearly always expressed with a 
dichotomous variable. Descriptions of study sites may set the stage for an analysis and 
assist in the explanation of residual eff ects, but even basic factors, such as population 
density (which might aff ect disease transmission) or other environmental characteris-
tics identifi ed in Mosley and Chen’s frequently tested framework (1984), are not often 
considered in the formal analysis of mortality. 

Urban residence is one of the most commonly identifi ed factors in mortality varia-
tion, and the main reasons given for its importance in contemporary developing coun-
tries are spatial. Urban residents (and, just as importantly for disease transmission, their 
neighbors) have greater access than their rural counterparts to resources such as health 
services, clean water, sanitation, and education. Entwisle et al. (1997) considered a spa-
tially sophisticated measure of nearness to resources. Using a network analysis of data 
on roads, they found signifi cant relationships between contraceptive choice and acces-
sibility to towns and health centers. Specifi cally, travel time eff ects are important even 
at short distances, and road composition plays a part in method selection.

Urban areas also have higher population densities, making it easier to share informa-
tion and resources. In a recent article, Woods (2003) argues that mortality varies along 
an urban-rural continuum, rather than between discrete urban and rural environments, 
and that at least in the past in Europe the rural end of this continuum favored survival. 
He suggests that future analyses of urban-rural diff erentials in mortality should focus 
on mortality in childhood, which “appears to be highly sensitive to diff erences in popu-
lation density” (Woods, 2003: 43). Defo’s (1994) study of child survival in Cameroon 
using longitudinal data found that overcrowding has deleterious eff ects on both infant 
and child survival. Nevertheless, Woods (2003) recommends distinguishing between 
infant and child deaths, in part because “an excess of the latter may be found especially 
in urban centers and at times before the medical control of childhood diseases became 
possible” (Woods, 2003: 43). 

Using a fairly coarse but nonbinary measure of urbanness, Gupta and Baghel (1999) 
found that urban residence is an important factor in infant mortality. Mortality in the 
slums was found to be higher than in other parts of urban areas, but the rates in slums 
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were more favorable than in rural parts of India. Further, mortality was found to be 
higher in the slums of major cities than in smaller metropolises. 

Other recent work has shown the importance of spatial disaggregation. Root (1997) 
contends that population density is an important factor in spatial patterns of child 
mortality in Zimbabwe, although his test of this hypothesis is crude; he divides the 
country at a coarse level into high- and low-density regions. In his study of West Africa 
and East/Southern Africa, Root (1999) used DHS data to examine patterns at the sub-
national (regional) level. Th ese data typically consisted of fi rst-level administrative units 
or aggregations thereof. Root found important subnational patterns, and suggested that 
these patterns should be analyzed in connection with population density and vector 
habitat data, key factors in the transmission of infectious diseases.

Developments in small area estimation methods (Elbers et al., 2003) have enabled 
researchers in several countries to combine low spatial resolution household survey data 
with high-resolution census and physical data in order to estimate health and economic 
indicators at high resolution. Specifi cally, Fujii (2002) and Fujii et al. (2002) have com-
bined Cambodian household survey and census data with spatial data including land 
use, agricultural production, climate, vulnerability to fl ooding, and distance to rivers, 
roads, towns, cities, and health facilities to generate estimates of poverty and malnutri-
tion with acceptable standard errors for most communes. However, because the spatial 
data are used to estimate the demographic indicators, the two classes of data cannot be 
compared statistically.

Lastly, demographic analysis has long been concerned with the relationship of popu-
lation dynamics and agricultural production (Boserup, 1965; Malthus, 1798). Several 
recent studies have shown the importance of spatially-specifi c climatic factors on health 
and mortality outcomes (NRC, 2001). Climate is of potential interest because it in-
corporates factors aff ecting agricultural production and disease transmission (through 
vector, water, and airborne mechanisms). Curtis and Hossain (1998) examine the ef-
fects of aridity on child malnutrition and fi nd it to be a signifi cant predictor of wasting 
(see next section). Findley et al. (2002) fi nd that the incidence of infectious diseases 
is closely linked with rainfall in Mali; malaria is most prevalent one to two months 
after peak rainfall, and acute respiratory infections peak in dry months. Quantitative 
research has received support from in-depth qualitative research. For example, Adams 
(1994) and colleague (Sauerborn and Adams, 1996) fi nd complex connections between 
climate anomalies, household food security, and the health and nutrition of household 
members in rainfall-dependent agricultural communities in Mali. Pitt and Sigle (1997) 
fi nd that seasonal variability in rain may cause problems in smoothing income and re-
source distribution across seasons, ultimately compromising the well-being of children 
in Senegal. Th is eff ect is magnifi ed in rural areas, where households are often more vul-
nerable to environmental shock than urban households. Numerous studies have shown 
seasonality in the incidence of diarrhea (e.g., Armah et al., 1994; Muhuri, 1996). Th ese 
climatic variables, while intrinsically spatial, are often specifi ed only as time variances. 

1.3 DHS Experience with Cluster-level Spatial Data 
DHS data were fi rst used in regional highly spatially disaggregated form in the West 
Africa Spatial Analysis Prototype Exploratory Analysis (WASAP) project. WASAP 
studies analyzed diff erences in demographic and health indicators across social and 
ethnic borders and aridity zones in 12 countries. Curtis and Hossain (1998) used 
WASAP data to consider the eff ects of aridity, population density, agricultural produc-
tion, and market tension (a theoretical measure of the “pull” of local and international 
markets based on agroclimatic and infrastructure data) on child malnutrition. Control-
ling for correlates from the DHS data (maternal education, birth order, age, incidence 
of diarrhea), only aridity and nonfood crop production were signifi cant predictors of 

Climate is of poten-
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wasting, and only market tension was a signifi cant predictor of stunting. Saha (1998) 
linked increases in market tension and level of market tension and economic diversity 
with knowledge and use of modern methods of family planning. 

Expected Gains From Current Approach
Th e current data mark an improvement over WASAP in several respects. First, the clus-
ter locations have been geocoded more consistently, using handheld GPS units. Second, 
the component surveys were carried out over a shorter time interval (fi ve years instead 
of ten years). Lastly, the increased availability of spatially explicit physical and popula-
tion data allows for analysis with a wider range of variables at higher resolution. For 
example, WASAP took its population data from a set of agricultural censuses averaging 
less than 25 units per country. Th e current study uses population data from more than 
1200 units in the ten survey countries.
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Th e analysis is based on DHS data and linked information from a variety of spatial data 
sources. DHS data analyzed in this report are drawn from the ten most recent georef-
erenced surveys in West Africa: Benin, Burkina Faso, Cameroon, Côte d’Ivoire, Ghana, 
Guinea, Mali, Niger, Senegal, and Togo (see Map 3). Since data collection was carried 
out within a relatively short period of time, 1997 to 2001, period eff ects on mortality 
experience were minimized. Surveys were also conducted in this time period in neigh-
boring Nigeria, Gabon, and Mauritania, but they did not include the georeferenced 
cluster data necessary for locating respondents accurately.

Data on 122,389 children from the selected surveys who were born during the ten 
years before the respective dates of interview were pooled into one data set. Since we 
are interested in exposure to death up to the fi fth birthday, about half of the cases were 
right censored in the calculation of child mortality.² Surveyed births are located in 
2,771 clusters across the ten countries. Th e locations of these clusters were recorded at 
the time of the survey using GPS devices (see Map 4).

2.1 Adjusted Weights
All of the DHS surveys used in this report are nationally representative.³ Th e sample 
design is a probabilistic two-stage sample, where enumeration areas (EAs) are ran-
domly selected with probability proportional to their size. Th e households within the 
selected EAs are randomly selected with equal probability, and sampling weights are 
assigned to individuals. A thorough review of sampling methodology is presented in 
the DHS Sampling Manual (Macro International, 1996).

For this analysis, information on the 122,389 children described above was pooled 
into one data set. Because of large diff erences across country populations and sample 
sizes, the sample weights in the pooled data set needed to be rescaled to represent the 
ten countries in proportion to their populations. For example, the births in the Côte 
d’Ivoire sample in the ten years preceding the survey represented only 0.06 percent of 
all the births in that country in the same time period. Th e births in the Togo sample 
in the ten years preceding the survey represented 0.71 percent of all the births in that 
country in the same time period. An expansion weight was calculated for each country 
and then multiplied by the original sample weight. Th e weights were then renormal-
ized to average to one across the pooled sample. Th e new weights were applied in the 
analysis. Because of our primary interest in spatial clustering, we have not adjusted 

2Data and Study Design

² Right censoring refers to those cases whose observed time is truncated before their fi fth 
birthday. We have only partial information, that is, we know that they survived until at least the 
time of the interview.

³ Th e Mali and Niger surveys exclude remote populations, totaling 2.6 and 4.7 percent of 
their populations, respectively. Details follow in the section on the aridity variable, which is most 
likely to be aff ected. Residents of refugee camps were not surveyed in Guinea.
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their populations.
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for maternal clustering. Subsequent analyses could account for associations between 
siblings.

2.2 Data Quality 
Th e main issue concerning data quality is that the age at death data, which is reported 
in months, shows considerable heaping at 12 months. Some of the deaths reported at 
12 months may have actually occurred at 10, 11, 13, or 14 months. Th e interpretation of 
this response can be important for the estimation of infant mortality, in particular. To 
the extent that deaths at 10 or 11 months were misreported as 12 months, heaping will 
result in a an underestimate of infant mortality. Heaping of age at death at 12 months 
happens to some extent in all DHS surveys because of respondent error or interviewer 
error. 

An index of heaping at 12 months may be calculated by dividing the number of 
deaths at 12 months by the mean number of deaths at months 10, 11, 12, 13, and 14 
(Curtis, 1995).  In this study, the mean heaping index was 2.8, ranging from 1.5 in 
Niger to 4.2 in Guinea.  Overall, this implies that unadjusted infant mortality rates are 
underestimated by about 2 percent.  Conversely, because there are fewer deaths in the 
1 to 4 years age group, the corresponding unadjusted child mortality rates are overesti-
mated by slightly more than 2 percent. 

Because there is no way to accurately redistribute individual deaths by changing the 
age at death, and because the adjustment would not signifi cantly infl uence the relative 
rates of mortality of interest in this study, no adjustment was made for heaping in this 
report. Nevertheless, we have taken steps to avoid an ambiguity in the interpretation of 
month that is sometimes overlooked. Following the usual convention when age is re-
ported in years, we assume that age at death in months means completed months of age. 
Th erefore, to estimate exact age at death, 0.5 months was added to each age reported 
in months. By this reckoning, for example, 12 months becomes 12.5 months, which is 
clearly past the fi rst birthday.

2.3 Measures of Infant and Child Mortality
DHS estimates of infant and child mortality use direct methods and are based on birth 
histories. Th ey are period-specifi c rather than cohort-specifi c, meaning that children of 
a particular age were exposed to the risk of death during a fi ve-year period prior to the 
survey date—but not necessarily the fi ve years immediately preceding the survey. See 
Sullivan et al. (1994) for a detailed discussion of DHS childhood mortality estimates. 
Period-specifi c rates are synthetic cohort probabilities in which children of diff erent 
birth cohorts contribute to the mortality experience of diff erent subintervals of age. Th e 
advantage of calculating a synthetic rate is that in using partial survival time informa-
tion at the date of interview, we have estimates for the most recent period, rather than 
only for children who have been observed for the full period of interest. Table 1 shows 
infant and child mortality rates for the early 1990s and the late 1990s for the countries 
selected for analysis in this report.

Two standard measures of child mortality are ₁q₀, the probability of dying in the fi rst 
year of life, and ₄q₁, the probability of dying during ages 1–4, given that the child sur-
vived the fi rst year. Th e infant mortality rate (IMR), when divided by 1000, is equivalent 
to ₁q₀. Th e probability of surviving to age fi ve can be expressed as (1 – ₁q₀) × (1 – ₄q₁). 
Th e analysis in this report is based on estimates of ₁q₀ and ₄q₁. 

2.4 Geographic Data
Over the past decade, GIS software has become more accessible to social and health 
researchers, and geographic data have become increasingly available in formats that 
may be integrated with georeferenced survey data. Nevertheless, integration remains a 

Following the
usual convention 

when age is 
reported in years, 

we assume that age 
at death in months 

means completed 
months of age.
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nontrivial undertaking and therefore geographic variables must be selected with care. 
Using GIS software, geographic data were assigned to cluster locations, which were in 
turn appended to household, maternal, and child data from the DHS surveys. Th at is, 
the cluster locations were plotted on each geographic layer (e.g., rainfall, urban extents). 
Distances were then calculated to features including urban areas and the coast. Th e 
values of the geographic layers where the DHS clusters fell were then attributed back 
to the individual households in the clusters. 

Using the newly updated Gridded Population of the World (GPW) (version 3, al-
pha), population densities (in the year 2000) were recorded for each cluster location, 
and calculated for the area within a 10 and 30-kilometer radius of each (CIESIN, 2003; 
see Map 4). Th e GPW database reallocates population estimates from the census units 
in which they were collected (roughly 1,200 for the ten countries in the study) to a 
2.5-minute quadrilateral grid, a format easily overlaid with the DHS cluster points (see 
Table 2). Distances were calculated to the coast (using the Digital Chart of the World’s 
coastal boundary data) and the nearest populated places of 20,000 and 50,000 residents, 
coded both as point locations and as urban extents of fi nite area (Balk et al., 2003; see 
Map 5). Similar to GPW, the database of populated settlements uses census data that 
is assigned to urban polygons as delineated by the Nighttime Lights dataset (Elvidge 
et al., 2001) and a few other sources, as the lights are of inferior quality in parts of Af-
rica (Balk et al., 2003). (Th e Nighttime Lights data detect the amount of stable light at 
night, and are highly correlated with both urban areas and electrifi cation.⁴) All of the 
above variables were calculated a second time ignoring any part of the above area that 
was on the other side of a national border. 

Farming system (Dixon et al., 2001, see Map 6), arid zone (UNEP, 1997; WRI, 2002; 
see Map 7), average rainfall (CRU, no date, see New et al., 1999; see Map 8), growing 
season (Fischer et al., 2000, see Map 10) and an index of malaria risk (Kiszewski et al., 
forthcoming) were calculated at each cluster point. Each of these observational datasets 
was developed for application in agricultural, climate, or other research areas, but due to 

Table 1
Basic data on survey countries

5-year period preceding survey 10-year period preceding survey

Infant 
mortality

(1q0) 

Childhood 
mortality

(4q1)

Infant 
mortality 

(1q0) 

Child hood 
mortality 

(4q1) Births
Female 
sample Clusters Year

Pop ‘95 
(UN, 
‘000)Country

Most 
recent 
survey

Prior 
survey

Most 
recent 
survey

Prior 
survey

Most 
recent 
survey

Most 
recent 
survey

Most 
recent 
survey

Most 
recent 
survey

Most 
recent 
survey

Most 
recent 
survey

Prior 
survey

Benin 89.1 93.9 77.8 80.0 94.8 75.0 10,395 6,219 247 2001 1996 5,336
Burkina Faso 105.3 93.7 127.1 103.1 108.6 129.5 11,734 6,445 210 1998-99 1992-93 10,415
Cameroon 77.0 64.3 79.9 65.2 79.8 72.3 7,859 5,501 203 1998 1991 13,182
Côte d’Ivoire 112.2 88.5 77.2 66.9 111.5 70.7 3,884 3,040 140 1998-99 1994 13,528
Ghana 56.7 66.4 53.9 56.8 61.2 52.4 6,555 4,843 400 1998 1993 17,649
Guinea 98.0 87.5 106.6 99.0 12,011 6,753 293 1999 7,153
Mali 113.4 122.5 130.5 131.2 126.2 128.3 25,984 12,817 403 2001 1995-96 9,944
Niger 123.1 123.1 171.8 222.6 135.8 193.0 15,333 7,577 268 1998 1992 9,150
Senegal 67.7 68.2 76.5 68.2 69.4 75.2 14,569 8,593 320 1997 1992-93 8,330
Togo 79.7 77.3 72.3 83.8 80.3 69.0 14,065 8,569 288 1998 1988 4,060

Source: DHS Statcompiler, United Nations

⁴ Because the censor detects stable light sources, especially electricity, which is notably absent 
from many parts of Africa, including urban areas, supplemental sources and indirect estimation 
techniques were also applied to estimate the extent of urban settlements in Africa (see Balk et 
al., 2003 for additional details).
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Table 2
Geographic variables
Variable Source data Source Description Variants Resolution

Demographic

Population 
Density

Gridded 
Population 
of the World 
(GPW) v. 3

CIESIN A1) at cluster, A2) 
within 10 km, and 
A3) within 30 km, B1) 
unconstrained and 
B2) constrained by 
national borders

2.5 minutes

Urban 
proximity

Urban-rural CIESIN Distance 
(euclidean) to 
nearest urban area

Urban areas > A1) 
20,000 and A2) 50,000 
people, coded as B1) 
points (presumed 
centroids) and B2) 
polygons, C1) uncon-
strained and C2) con-
strained by national 
borders

1 minute

Coastal 
proximity

Digital Chart 
of the World 
(DCW)-derived 
continent 
boundary

National Imagery 
and Mapping 
Agency (NIMA)

Distance 
(euclidean) to 
nearest point on 
the coastline

1:1,000,000

Distance to 
roads

VMAP roads 
data

National Imagery 
and Mapping 
Agency (NIMA)

Distance (euclid-
ean) to nearest 
point on a road

1:1,000,000

Ecological

Farming 
system

Farming 
systems

FAO Farming system 
based on the 
classifi  cation 
system by Dixon et 
al. (2001)

Unspecifi ed

Arid zone Arid zones Millennium 
Ecosystem 
Assessment

Type of arid zone 
(non-arid zones are 
undifferentitated)

Unspecifi ed

Stability 
of malaria 
transmission 
index

Kiszewski et al., 
forthcoming

Composite of 
environmental and 
epidemiological 
data

30 minutes

Rainfall CRU05
0.5 Degree 
1961–1990 
Mean Monthly 
Climatology

Intergovernmental 
Panel on 
Climate Change/
International 
Research Institute 
for Climate 
Prediction (IPCC/
IRI)

Average monthly 
rainfall at cluster, 
in mm/day, 1961–
1990

By month, yearly 
average, maximum 
month

30 minutes

Growing 
season

International 
Institute for 
Applied Systems 
Analysis (IIASA)

Length of growing 
season, in months

30 minutes

the common GIS format and scale, they are appropriate for integration with the DHS 
data. A full list of geographic variables appears in Table 2 and is described in detail in 
Chapter 3.
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To describe diff erences in mortality by single variables we undertook a survival analysis 
using the Kaplan-Meier (product-limit) method. Th is method tracks the age pattern of 
mortality during the fi rst year of life and during the next four years for selected covari-
ates. For the multivariate analysis, we used a generalized linear model to fi t ₁q₀ and ₄q₁. 
Each method is described in detail below, following a description of the covariates. 

3.1 Variable Selection
Table 3 shows mean values or proportions of the variables included in the analysis for 
the sample as a whole and for each of the ten countries in the study. Th ese variable sets 
form the basis of the models in the multivariate analysis. 

3.1.1 Control Variables [Model 1]
Country and birth cohort are included as control variables. In the multivariate analysis 
below, Ghana, with the lowest mortality, is selected as the reference country. Th e ten 
surveys were conducted within a fi ve-year period, and in each country we focus on the 
births during the ten years preceding the survey. Th e years of births in the pooled data 
fi le range from 1987 to 2001. As a partial control for period trends in fertility, we broke 
this range into three fi ve-year intervals: 1987–1991, 1992–1996, and 1997–2001. We 
recommend caution in the interpretation of diff erentials and coeffi  cients for the ten 
countries and the three cohorts. Country and cohort are likely to represent the net 
eff ect of many unmeasured infl uences that vary across countries and time. Moreover, 
they are somewhat confounded simply because the surveys were not conducted at the 
same time.

3.1.2 Proximate Determinants [Model 2]
Th e child’s sex, birth order, and multiple birth status were included. Guinea had the 
highest proportion of male children, 51.4 percent, with a study average of 50.5 percent. 
Multiple births, accounting for 3.6 percent of all births, were much more common in 
Benin (5.8 percent) and Togo (4.9 percent). Mother’s age at birth was also included: 
Ghana, Togo, and Senegal (with the lowest fertility among the ten countries) have rela-
tively small shares of younger mothers and relatively large shares of older mothers. 

Birth spacing was not explicitly included, although many studies have shown that 
when birth intervals are short, i.e., less than two years, both the child at the beginning 
and the child at the end of the interval are more likely to die. (Th is eff ect is due to the 
competition for maternal time and resources—similar to the competition between the 
children in a multiple birth, an included variable.) In our preliminary analysis we found 
that much of the eff ect of birth spacing is captured by birth order. A high proportion of 
the births are fi rst births, and they have no preceding birth interval. We were also con-
cerned by the censoring of the subsequent birth interval, a result of our focus on recent 
births. Lastly, there are endogenous or feedback eff ects because an early child death can 
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Table 3
Descriptive statistics of key covariates, by country

Variable Benin
Burkina 

Faso
Came-
roon

Côte 
d’Ivoire Ghana Guinea Mali Niger Sene gal Togo All Type

Control variables
Birth cohort
Born 1987–1991  1.9  27.9  34.4  26.5  28.9  20.7  6.1  33.7  47.0  36.5  26.5 %
Born 1992–1996  48.9  51.2  51.9  50.8  49.7  53.6  50.7  51.0  50.7  49.9  50.9 %
Born 1997–2001  49.2  20.8  13.7  22.8  21.4  25.7  43.2  15.4  2.3  13.6  22.6 %

Proximate determinants        
Multiple birth  5.8  2.9  3.8  3.2  4.0  3.8  3.5  3.4  2.8  4.9  3.6 %
Male  50.4  50.9  49.5  50.0  50.6  51.4  50.9  50.9  50.8  50.3  50.5 %
Mother’s age at birth        
Younger than 20  15.5  16.5  22.1  21.1  14.1  20.1  20.0  21.3  15.2  12.9  18.5 %
20–34  71.0  67.6  66.0  66.4  69.8  67.2  65.2  66.1  68.6  71.7  67.5 %
35 or older  13.5  15.9  11.9  12.5  16.1  12.7  14.8  12.6  16.2  15.5  14.0 %
Birth order        
First birth  20.2  17.6  21.1  22.8  22.9  18.1  16.7  16.3  17.7  19.0  19.6 %
Second birth  17.3  15.7  17.2  17.3  19.4  17.0  15.3  14.0  15.9  17.7  16.7 %
Third or higher birth  62.5  66.7  61.7  59.9  57.8  64.9  67.9  69.7  66.4  63.3  63.7 %

Socioeconomic factors        
Household water source        
Piped  37.4  8.5  31.3  46.7  30.9  17.8  26.7  16.0  44.1  30.1  28.6 %
Well  43.2  86.2  31.4  45.3  36.2  47.0  68.3  75.7  52.8  40.2  53.4 %
Surface  13.8  4.7  36.3  8.0  31.8  34.6  4.9  2.6  2.0  28.5  16.4 %
Other  5.6  0.6  1.0  0.0  1.1  0.5  0.1  5.6  1.1  1.2  1.5 %
Toilet facility         
Flush toilet  1.1  0.3  4.6  8.3  4.2  1.7  4.9  0.9  6.9  0.0  3.7 %
Pit latrine  23.7  18.2  84.3  51.2  68.8  60.9  73.1  16.9  59.0  27.8  50.7 %
Basic pit  74.5  81.4  11.0  40.4  26.9  37.4  22.0  82.1  33.8  70.0  45.4 %
Other toilet  0.7  0.1  0.1  0.0  0.1  0.0  0.0  0.1  0.3  2.2  0.2 %
Floor        
Natural fl oor  45.5  76.4  60.1  25.7  18.7  58.6  83.1  86.5  43.1  30.8  53.1 %
Rudimentary fl oor  0.5  0.0  0.2  0.4  0.1  1.3  0.0  0.0  0.0  0.2  0.2 %
Finished fl oor  53.9  23.3  39.7  73.9  81.3  40.0  16.8  13.1  56.7  68.7  46.5 %
Other fl oor  0.1  0.3  0.0  0.0  0.0  0.0  0.0  0.4  0.2  0.3  0.1 %
Household assets  
Electricity  15.5  3.8  36.4  45.2  32.0  13.7  9.6  5.8  28.0  10.9  22.2 %
Radio  76.8  61.9  55.6  66.5  48.7  58.2  73.9  37.4  70.3  54.5  59.3 %
Television  13.4  4.5  18.2  28.8  17.0  8.9  15.5  4.7  21.3  11.6  15.0 %
Refrigerator  3.9  1.8  9.6  14.0  10.9  6.2  4.6  2.2  10.8  3.2  7.3 %
Mother’s education         
No education  75.4  92.3  37.7  66.7  40.3  87.0  85.5  89.3  78.1  62.6  69.7 %
Some primary  16.6  3.6  24.6  13.1  16.9  5.7  9.0  3.7  7.5  27.3  12.3 %
Completed primary  1.3  2.2  14.4  12.8  3.6  1.6  1.7  4.4  8.0  2.0  6.1 %
Some secondary or higher  6.6  2.0  23.3  7.3  39.2  5.8  3.8  2.6  6.4  8.1  12.0 %
Spatial variables         
Urban  30.5  9.9  27.2  31.9  25.2  24.9  22.2  16.2  33.5  23.5  23.5 %
Density within 30 km  262.9  72.8  105.4  343.1  301.4  91.3  56.3  59.8  947.6  196.0  225.4 mean
Distance to coast  190.2  758.6  417.0  196.7  169.6  203.2  792.3  877.2  76.6  199.0  417.1 mean
Distance to place of 50,000 
population  37.5  73.9  34.5  40.7  28.8  44.5  76.4  63.2  29.9  29.5  47.3 mean

Arid zone         
Nonarid  24.9  0.0  71.2  68.7  59.8  93.4  0.9  0.0  30.0  75.0  41.7 %
Dry subhumid  71.0  12.6  6.6  31.3  23.0  6.6  25.6  0.0  7.7  13.2  18.9 %
Semiarid  4.1  87.4  21.2  0.0  17.2  0.0  64.8  92.9  50.8  11.9  36.8 %
Arid/hyperarid  0.0  0.0  1.0  0.0  0.0  0.0  8.7  7.1  11.4  0.0  2.6 %
Farming system         
Tree crop  0.0  0.0  32.4  57.5  58.6  1.6  0.0  0.0  0.0  18.8  22.0 %
Coastal artisanal fi shing  36.6  0.0  3.2  21.3  26.0  18.8  0.0  0.0  0.5  20.1  11.9 %
All others  63.5  100.0  64.4  21.1  15.4  79.7  100.0  100.0  99.5  61.1  66.1 %
Average daily rainfall (mm)  3.1  2.0  4.4  3.9  3.3  5.2  2.0  1.3  1.8  3.1  3.0 mean
Malaria Stability Index  17.8  32.4  14.3  23.2  25.6  20.6  29.4  24.1  18.7  24.2  23.5 mean
Growing season (months)         
Less than 3  0.0  3.1  1.8  0.0  0.0  0.0  24.1  76.3  15.7  0.0  12.6 %
3–4  0.0  21.5  4.5  0.0  0.0  0.0  12.1  21.5  41.5  0.0  9.6 %
6–8  74.0  75.4  26.9  6.6  20.8  72.3  63.8  2.2  42.8  45.7  38.0 %
8–10  26.1  0.0  30.1  29.5  46.6  18.3  0.0  0.0  0.0  54.4  20.0 %
More than 10  0.0  0.0  36.8  63.9  32.7  9.4  0.0  0.0  0.0  0.0  19.8 %
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tend to shorten the subsequent birth interval. Rather than divert attention from the 
primary concern of this study, we decided to avoid the measurement and modeling is-
sues that would have been raised by the inclusion of the prior and/or subsequent birth 
intervals. 

3.1.3 Spatial Variables [Model 3]
Th e spatial variables included here fall primarily into two types: those describing an 
urban-rural continuum, and those describing climatic parameters.

Th e classic urban-rural indicator is the usual dichotomous classifi cation given dur-
ing the enumeration phase of the survey implementation. Th e two additional measures 
considered are average population density within 30 kilometers and the distance to the 
nearest populated settlement of 50,000 persons or more (Balk et al., 2003), described 
above. We used a buff er of 30 kilometers to smooth diff erences in the density of popu-
lation information, as well as in the distribution of surveyed households around a given 
cluster point. A DHS survey cluster is a representation of a group of households whose 
boundaries may or may not coincide with a census enumeration unit. Th e primary sam-
pling unit for DHS surveys, the cluster, is usually a census enumeration area (EA). In 
rural or sparsely populated areas, density within these clusters may be highly varied. In 
many countries, rural clusters may contain more than one village, and they may be geo-
graphically large. In urban areas, EAs are often geographically small but more densely 
populated. Urban EAs are usually segmented during the listing process (see Macro 
International, 1996 for further details). Fifty thousand was chosen as the city popula-
tion threshold because data on cities of that size are more consistently available than 
for smaller cities. All spatial indicators were chosen ignoring national boundaries in 
determining the 30-kilometer radius and the nearest city. While borders have obvious 
political and economic eff ects, they are less likely to impede disease vectors. Th e eff ect 
of specifi c borders is an open question beyond the scope of this report.

Twenty-four percent of the births were in urban areas; but the average population 
density of urban births is 665 persons per square kilometer. One thousand persons per 
square kilometer is a conventional minimum for urban areas, although perhaps more 
applicable to North America and Europe than Africa (Rain, n.d.).

Additionally, a variable for the shortest distance to the coast is included. Th is variable 
has been shown to be an important correlate of economic development (Sachs et al., 
2001) as a proxy variable for access to goods and services on the global market, trading 
potential, and so forth. We included it to determine whether there is evidence for a 
similar eff ect on mortality. As Table 3 indicates there is considerable variability in the 
national averages of this variable.

We have adopted several measures of climate in part because no single measure is ex-
pected to capture the inherent complexities. We explored fi ve measures—rainfall, arid-
ity, farming systems, length of growing season, and the stability of malaria transmission. 
Th eory suggests that excess dryness or wetness will increase the risk of mortality. In 
dryer areas, increases in rain will be expected to improve child survival by providing 
sources of water, inputs to agricultural production, and improved sanitation. In wetter 
areas, excess rain may reduce crop yield (due to pests present only in very wet areas) and 
provide a more fertile vector habitat. 

Rainfall, as shown in Maps 8 and 9, clearly has wide temporal and spatial variation in 
West African countries. Two regimes are most prominent. In most of the survey region 
August is the wettest month. In southern and central Côte d’Ivoire, Ghana, Togo, Be-
nin, and Cameroon, there are two rainfall peaks—one in May/June and the second in 
August/September. January/December is the driest period in nearly all areas, although 
similarly low rainfall extends from November to March in Burkina Faso, Mali, Niger, 
and Senegal. 

We explored 
fi ve measures of 
climate—rainfall, 
aridity, farming 
systems, length 
of growing 
season, and the 
stability of malaria 
transmission. 
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Aridity, another measure of dryness, combines precipitation and evapotranspira-
tion rates into distinct classes. However, aridity zones proved to be too problematic to 
use. Nomadic populations in Mali and entire arrondissements (districts) and the rural 
population of other districts in Niger were excluded from the sampling frame. Th is is 
noteworthy because these areas contribute disproportionately to the population of arid 
and hyper arid zones. Only four countries have clusters in the arid and hyperarid zones, 
and a disproportionate number of those are in Mali. Mali is the only country contrib-
uting to all four zones, and four countries contribute to only two zones (Burkina Faso, 
Côte d’Ivoire, Guinea, and Niger). Additionally, aridity is highly correlated with rainfall 
(–0.79), such that inclusion into the model with rainfall would overspecify it. Although 
we did some preliminary analysis of this variable, we omit it from further treatment 
here due to sampling concerns and the availability of substitute measures. 

Farming systems, delineated in Dixon et al. (2001), provide an indication of the 
likely potential of the agro-climatic zone. Delineations are coarse, however, and can-
not be considered accurate indicators of food supply or employment type for surveyed 
households or for surrounding communities. Preliminary analysis with a limited model 
including all ten farming systems present in the study region indicated that two sys-
tems, coastal artisanal fi shing and tree crops, showed the strongest relationship with 
mortality.

Th e length of the growing season has long been associated with agricultural pro-
ductivity (FAO, 1978). Seasons of fewer than 70 days are considered too short for 
sustainable agriculture, and long seasons, of greater than 300 days, are considered not 
optimal because the excess rain fosters pests that damage crops. Th e range of 120–240 
days is considered good, with 240–300 days being considered optimal. Th e variable is 
so highly correlated with rainfall, at 0.84, that we could not add it to the multivariate 
model while also controlling for rain. 

One further variable, closely related to climate, was an index of the stability of ma-
laria transmission (Kiszewski et al., forthcoming). Th is data set is constructed by “in-
corporating published estimates on the proportion of blood meals taken from human 
hosts, daily survival of the vector, duration of the transmission season, and extrinsic in-
cubation” (Kiszewski et al., forthcoming, 1). However, because the majority of inputs to 
the index are at a relatively coarse resolution, it interacted too strongly with the country 
variable and was therefore omitted from the main models.

Variables associated with land cover and land use were also omitted. Th ese variables 
might include land cover classifi cation or land use and vegetation indices (e.g., Normal-
ized Diff erence of Vegetation Index [NDVI]). Such variables might serve as proxies for 
vector habitats and ecological factors infl uencing agro-pastoral economic life. Several 
possible datasets were considered for use, but all were too complex to be introduced in a 
systematic and rigorous way in the short term. Th us, rain and selected farming systems 
were the only variables ultimately selected for inclusion in the multivariate model. 

3.1.4 Socioeconomic Variables [Model 4]
Socioeconomic variables included in the analysis refl ect the household environment 
and the household assets. Th e distinction between household environment and assets 
is somewhat arbitrary because environmental characteristics may be heavily infl uenced 
by assets—that is, a household’s ability to aff ord high-quality water, sanitation, and 
fl ooring, or the community’s capacity to fund public infrastructure (e.g., to provide safe 
water and sewer services). Th e distinction is maintained nevertheless because environ-
mental characteristics are often somewhat exogenous to the household (e.g., commu-
nity-level services) and because they may directly mediate vectors of disease transmis-
sion or otherwise infl uence the level of contamination in the child’s home environment. 
Household environment variables included in the analysis were the source of drinking 
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water, type of toilet, and type of fl ooring. Piped water, modern toilet facilities, and 
fi nished fl ooring are believed to improve chances of survival by minimizing contamina-
tion. Th eir eff ects are expected to be signifi cant, especially for older infants and children 
who are more exposed to them through drinking the water, crawling or playing on the 
fl oor, and using the toilet. Th e eff ects for the latter may also aff ect young infants by in-
direct exposure to contamination via the mother using unsanitary toilet conditions. 

Household assets in the model include electricity, radio, television, and refrigerator. 
Th ese are indicators of the socioeconomic status of members of a household. House-
holds with higher socioeconomic status (more assets) are believed to have a positive im-
pact on infant and child survival. We experimented with combining them into a single 
assets index but found it more informative to retain separate variables. As expected, 
households with these assets were more likely to be households in which women had 
a higher than average level of education. Th e exception was in the case of radios; the 
majority of households possessed a radio regardless of the mother’s level of education.

Data on the mother’s current partner’s education and occupation, although impor-
tant socioeconomic indicators, were omitted from the analysis because the information 
was either not available or not comparable for all countries included. Similarly, while 
mother’s marital status (including informal union) is an important predictor of mortal-
ity, it was not included in this analysis because, since it shows so little variation, it is of 
limited use as a measure of current status.

3.1.5 Omitted Variables
Other potentially important types of variables were omitted from this study, notably 
variables relating to nutritional and health status. While information on breastfeed-
ing and young infant feeding are collected in DHS surveys, it is only for a subsample 
of children born in the three years preceding the survey. Likewise, for anthropomet-
ric information, only children born in the fi ve years preceding the survey had their 
weight and height measured. Similarly, basic health information about recent episodes 
of diarrhea, cough, and fever were available for children under age fi ve. In Cameroon, 
Niger, and Togo, these anthropometric and recent disease episode data were collected 
for children age 0–3 years.⁵ As stated earlier, this study includes a much larger sample 
of children born in the ten years preceding the survey. Furthermore, the nutrition and 
health data were collected only for children who were living at the time of the survey, 
thereby excluding the data for children who died during the same period.

Analyzing the risk of malaria transmission to child survival is limited to a bivariate 
examination. It could not be considered in the full multivariate model because of issues 
of multicollinearity and specifi cation. No other disease transmission factors are consid-
ered because of data constraints.

3.2 Survival Models
An analysis of selected survival functions served to model the distribution of deaths 
over time stratifi ed by selected covariates. Th e nonparametric Kaplan-Meier (product-
limit) method was used to generate maximum likelihood estimates of S(t), the prob-
ability that death occurs at an age greater than t.

Survival distributions were generated using the SAS 8.2 Lifetest procedure. By in-
corporating information on age at death, the distribution curves demonstrate the dif-
ferential pace and level of mortality for infants and children. DHS data provides age at 
death in months for children under age 24 months and age at death in years for older 

⁵ Senegal is the other exception: No anthropometry measures were collected there and only 
recent diarrhea (not cough and fever) is included for children age 0–5 years.
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children. A quantitative evaluation of the stratifi ed survival curves at age 12 months 
(for infants) and 59 months (for children) highlights the cumulative impact of these 
factors on the two age groups. 

We stratifi ed survival distributions by selected factors hypothesized to infl uence 
childhood mortality. Th e survival distribution estimates can be compared visually or by 
log-rank statistics that adjust for stratum scores and test for homogeneity of strata. Th e 
survival curves reveal initial confi rmation of expected fi ndings from both individual-
level factors (such as maternal education) and environmental factors (such as popula-
tion density). It is important, however, to recall that in this part of the analysis no other 
factors have been controlled. An analysis of the independent eff ects of these factors on 
infant and child mortality (i.e., controlling for an ensemble of other determinants) is 
presented in Part 4.

3.3 Generalized Linear Model
For the multivariate analysis, we used a generalized linear model (GLM). Th is technique 
(cf. McCullagh and Nelder, 1989) is similar to a hazard model or a survival analysis (cf. 
Namboodiri and Suchindran, 1987) but produces coeffi  cients that are more analogous 
to the usual ₁q₀ and ₄q₁. Th e computer analyses were done with the GLM procedure in 
Stata, versions 7 and 8. A brief description of the modeling strategy follows, as imple-
mented for infant mortality; similar logic applies to deaths among children age 1–4.

At the level of  the individual child, we defi ne a binary outcome, died0, coded 1 if the 
child died before reaching exactly 12 months (one year) of age and 0 if it survived. We 
also code a measure of exposure to the risk of dying, called time0, which can be between 
0 and 1. If the child was observed to die any time in the fi rst year of life, or was observed 
to survive the full fi rst year, time0 is coded 1. However, if the case was censored (i.e., the 
child was born during the year before the survey, and was still alive at the time of the 
survey), then time0 is the fraction of the year for which the child was observed. Th en, 
for a given sample of children, the standard estimate of ₁q₀ will be equivalent to the sum 
of died0 for those children, divided by the sum of time0. 

An individual-level statistical model that gives this same estimate will be a gener-
alized linear model with outcome died0, a binomial error distribution with binomial 
denominator time0, and a log link function. When this model is run with no covariates, 
the output will produce a constant which, if exponentiated, will be the estimate of ₁q₀. 
When covariates are included, the exponential of the constant term will be a fi tted ₁q₀ 
for the reference combination of the covariates. Th e exponential of a coeffi  cient for 
a covariate will be the relative risk for that covariate. For example, Table 4 gives the 
coeffi  cients (before and after exponentiation) for the covariate “country,” a categorical 
covariate; the reference country is Ghana.

In Table 4, all numbers except those in the last column come directly from the (Stata-
generated) computer output. Th e last column is obtained by exponentiating the fi rst 
column. Th e exponentiated constant term, 0.0605, is the estimate of ₁q₀ for Ghana, the 
reference (or “omitted” country). It is equivalent (when multiplied by 1000) to an infant 
mortality rate (IMR) of 60.5 deaths per 1000 births. Th e report on the 1998 Ghana 
survey (GSS, 1999: 83) gives an IMR of 56.7 for 0–4 years before the survey and 65.8 
for 5–9 years before the survey. Our estimate of 60.5 for 0–9 years before the survey 
is consistent with those values. Th e exponentiated coeffi  cient for Burkina Faso, for ex-
ample, is 1.7664, meaning that its ₁q₀ is 0.0605 × 1.7664 = 0.1069. Th is ₁q₀ is about 77 
percent [(1.7664 – 1) × 100 = 76.64)] higher than the ₁q₀ for Ghana.

In the tables, ** after an exponentiated coeffi  cient indicates that it is signifi cantly 
diff erent from 0 in a two-tailed 0.01 test or one-tailed 0.005 test; * indicates signifi -
cance at the two-tailed 0.05 or one-tailed 0.025 level, and # indicates signifi cance in a 
two-tailed 0.10 or a one-tailed 0.05 level. We use the # symbol and refer to one-tailed 
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tests because many potential hypotheses about mortality diff erentials are indeed one-
tailed rather than two-tailed. Signifi cance levels are determined from the z column of 
the computer output (the ratio of the coeffi  cient to its standard error) and describe the 
signifi cance of the diff erence from the reference category.

We have used a log probability model because of the familiarity of ₁q₀ and ₄q₁ to 
all demographers, but some analyses of infant mortality use logit regression, another 
generalized linear model. In logit regression, it is the logit of the probability of a death, 
rather than the log of the probability, that is linear in the predictors. In logit regression, 
exponentiated coeffi  cients are interpreted as relative odds, rather than as relative risks. 
Hazard or survival models are linear in the log and are also similar, but in those models 
the probability of death refers to an instantaneous rate of change in the survivorship 
function, rather than the change from exact age 0 to 1 and from exact age 1 to 5. 

For all of these models, the estimated probability of dying must be less than one for 
every case. Logit and hazard models are constructed in such a way—through the logit 
link and the instantaneous rate of change, respectively—that this condition is always 
satisfi ed. In our data, the maximum predicted probability of dying is always less than 
one (the maximum is about 0.80), but this is an empirical result and for other data sets 
or age intervals the log link function might not be usable.

Table 4
Results of GLM model for infant mortality by country

Country Coeffi cient
Robust 

standard error z
Exponentiated 

coeffi cient

Burkina Faso  0.568964  0.072360  7.86  1.7664**

Benin  0.427995  0.072815  5.88  1.5342**

Côte d’Ivoire  0.600754  0.102399  5.87  1.8235**

Cameroon  0.262742  0.084478  3.11  1.3005**

Guinea  0.596614  0.071421  8.35  1.8160**

Mali  0.741359  0.067393  11.00  2.0988**

Niger  0.743393  0.070315  10.57  2.1031**

Senegal  0.152848  0.075390  2.03  1.1651*

Togo  0.263117  0.073111  3.60  1.3010**

_cons  -2.805231  0.061622  -45.52  0.0605**

Note: The estimates in Table 4, as in all other tables in this report, are 
weighted (see section 2.1 for more detail on the weights), with robust 
estimates of the standard errors that take into account the cluster design of 
the data. Clustering at the household level is not taken into account.
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In general, we anticipate that the risks an infant faces during birth and the fi rst month 
of life are very diff erent from those faced after this period. Infant deaths are more 
closely linked to endogenous factors that are diffi  cult to prevent (e.g., congenital mal-
formations, hereditary diseases, and low birth weight). Older children are more likely 
to die from preventable diseases including infectious diseases and malnutrition. Th is 
pattern occurs because older children are more mobile and, in interacting with their 
environment, are more exposed to contamination in the air, water, and food. For these 
reasons, we anticipate that proximate factors act more strongly on infant mortality and 
socioeconomic and spatial factors act more strongly on child mortality.

Th e survival curves, which show a clear bivariate picture of mortality diff erentials, 
confi rm these associations (see Figures 1–10 and Table 6). Th e multivariate analysis 
that follows shows a somewhat more complex picture. Overall, there is confi rmation of 
conventional factors and support for inclusion of many of the spatial factors.

4.1 Survival Analysis
Table 5 provides a summary of the Kaplan-Meier estimates for strata in each covariate. 
With the exception of sex of children age 1–4 years, strata for all variables shown here 
have signifi cantly diff erent survival functions. Figures 1–10 show the survival density 
functions for infants and children by covariates.

Among the most important proximate determinants that infl uence child survival are 
the mother’s age at birth and the birth order of the child (Sullivan et al., 1994). Th ese 
maternal factors have diff erential impacts on infants and children: infant deaths among 
mothers under age 20 typically occur in early infancy; young motherhood has less im-
pact for children age 1–4 years (Figure 1). Birth order is closely related to mother’s age 
at birth. In sub-Saharan Africa this is due in part to early age at marriage and the re-
sulting early age at initiation of childbearing. Similar to infants of young mothers, fi rst 
births are less likely to survive infancy than higher order births. Likewise, the impact of 
birth order on survival is greatly reduced for children age 1–4 years (Figure 2). Multiple 
births face a much higher risk of death, especially during infancy (Figure 3).

Maternal education has been observed to have a strong impact on child survival. 
Unlike maternal factors that have a diff erential impact on infant and child survival, 
education is a socioeconomic characteristic that infl uences both age groups. Infants and 
children of mothers with no education both have only an 89 percent chance of survival 
at 12 months and at 59 months (Figure 4). Infants and children of mothers with sec-
ondary or higher education have greatly improved chances of surviving, 95 percent and 
97 percent, respectively.

Infants and children residing in urban areas have, on average, better survival chances 
than those in residing in rural areas. Th is advantage is usually assumed to be related 
to better infrastructure and access to services. When the survival curves of residence 
are overlaid with population density classes, the subtleties often disguised by the di-
chotomous urban-rural variable are exposed (Figure 5). While it is still clear that infant 

4Results
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mortality is higher in rural areas than in urban areas, in rural areas there is a density 
continuum indicating that infants living in the most sparsely populated areas (less than 
25 inhabitants per square kilometer) suff er the lowest probability of survival. Th ese very 
sparse areas may have the least adequate infrastructure to support prenatal and delivery 
services. Similarly, although infants generally enjoy greater chances of survival in urban 
areas, for infants who live in the most densely populated areas (more than 1000 persons 
per square kilometer) survival chances appear to be compromised. Th is is likely a refl ec-
tion of overcrowded or slum conditions where, similar to remote rural areas, maternal 
services are inadequate (Defo, 1994; Gupta, 1999; and Woods, 2003). 

Compared with infants, the survival pattern of children reveals a continuum of pop-
ulation density that is more closely clustered around rural residence (Figure 5). Th is 

Table 5
Summary table of S(t) for selected covariates
Characteristic S(t) at 12 months S(t) at 59 months

Mother’s age at birth
Younger than 20 86.9 89.3
20–34 91.0 91.2
35 or older 90.6 91.3

Birth order
First birth 88.4 91.3
Second birth 91.0 91.2
Third or higher birth 90.5 90.7

Birth cohort
Born 1987–1991 90.0 90.3
Born 1992–1996 90.1 91.1
Born 1997–2001 91.0 92.1

Mother’s education
No education 88.9 89.2
Some primary 91.5 93.1
Completed primary 92.3 94.1
Some secondary or higher 94.9 96.6

Multiple birth
Single birth 90.9 91.2
Multiple birth 71.0 86.5

Sex of child
Female 90.9 90.9
Male 89.4 90.9

Residence and density
Rural 89.3 89.8
Urban 93.0 94.4
<25 per sq km 87.6 89.1
25–100 per sq km 89.4 89.3
100–500 per sq km 92.3 93.6
500–1000 per sq km 94.7 96.0
>1000 per sq km 93.9 96.5

Distance to city of 50,000 population
In urban area 92.5 93.9
1–25 km 91.8 92.3
25–100 km 90.0 90.1
100–150 km 88.3 89.3
>150 km 87.6 87.6

Rainfall
<2 ml per day 88.6 86.5
2–4 ml per day 90.6 92.2
>4 ml per day 91.2 93.4

Farming
Tree crops 92.4 94.8
Root crops 87.9 90.9
Cereal/root crops 89.4 89.5
Agro-pastoral 89.3 87.7
Fishing 92.9 95.2

Growing season (months)
Less than 3 87.0 84.1
3–4 89.8 87.8
4–8 89.7 90.4
8–10 91.3 93.9
More than 10 92.1 94.5

Malaria
Low index 91.2 92.3
Medium index 90.2 91.4
High index 88.6 87.2

Note: The Chi-square for the log-rank statistics were strongly rejected at 
p < 0.0001 for all variables except sex of children age 1–4 years (p < 0.0537). 
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Multiple births

Figure 2
Birth order
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suggests that if children survived infancy in the most sparsely populated areas then, de-
spite the measure of sparseness, they are equally likely to survive to their fi fth birthday. 
Children in the sparsest settings, although having greater risk of death than children in 
urban, more densely populated areas, still have better chances of survival than infants 
in the sparsest settings. For both infants and children, mortality increases monotoni-
cally the further one resides from an urban area (Figure 6).  Th e negative eff ect of the 
highest population densities on infants does not have a parallel in the distance measure, 
perhaps because the highest density areas cannot be distinguished from slightly lower 
density areas in urban areas.

Variation in average daily rainfall has a greater impact on children age 1–4 than on 
infants. One explanation for this is that their dietary needs are varied and dependent on 
agricultural production, whereas an infant’s dietary needs are met by breastfeeding. Fig-
ure 7 shows that for children living in areas with an average of less than 2 ml of rainfall 
daily, the probability of survival after 59 months is 86.5 percent. In comparison, chil-
dren living in areas with higher average daily rainfall have a 92–93 percent chance of 
surviving after 12 months. Figure 8 shows similar patterns for the length of the grow-
ing season on infant and child survivorship, with the lowest survival rates for children 
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Mother’s education

Figure 5
Density per square kilometer and residence
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Figure 7
Average daily rainfall

living in arid and semiarid zones, that is, those with the shortest (less than 3 months, 
and 3–4 months) growing seasons. Even children in the main agricultural band of 4–8 
months have lower chances of survival than children in the most sustainable regime 
(8–10 months). Th e eff ect on infants is weaker, although the least advantaged growing 
season (i.e., the arid zone) stands apart from the others. Figure 9 shows that farming 
systems diff er considerably in both infant and child mortality.

Malaria transmission factors are important in child survival. We stratifi ed the malaria 
stability index into three categories corresponding to the 20 percent highest, 20 percent 
lowest, and middle 60 percent of transmission likelihood (Figure 10). Th e impact is in 
the expected direction for both age groups, that is, the stratum with a high transmis-
sion index has a faster pace of mortality than the low and medium transmission groups. 
However, the impact of a high transmission index appears to be more intense for chil-
dren age 1–4 years than for infants, perhaps because older children are more likely to 
be exposed to repeated malarial infections that contribute to the development of other 
diseases that increase the risk of death, such as severe anemia (Menendez et al., 2000; 
Slutsker et al., 1994). Further analysis is needed to determine if this trend persists 
when other factors are controlled. For reasons detailed below, this analysis cannot be 
undertaken here. 
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Farming system

Figure 8
Growing season
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4.2 Generalized Linear Model 
Tables 6 and 7 present the results from a series of fi ve GLM or log probability models 
applied to ages 0 and 1–4, respectively. Th e variables in the fi ve models may be sum-
marized as follows.

Model 1:  Country and time period. Th is is a baseline model; country and time period 
are largely interpreted as control variables and are included in all subse-
quent models. Th ere is wide variation in the coeffi  cients in this model, and 
one goal of the subsequent models is to explain or reduce this variation.

Model 2:  Model 1 plus four demographic characteristics of the child and mother: 
sex, multiple birth, birth order, and age of mother. Th ese four variables are 
included in all subsequent models, and as expected their coeffi  cients are 
quite consistent across models.

Model 3:  Model 2 plus household characteristics. Th ese include source of water; type 
of toilet; type of fl oor; whether the household has electricity, radio, televi-
sion, refrigerator; and mother’s education. Th ese would be the standard 
kinds of variables in a model for infant or child mortality. Note that this 
model does not include the urban-rural classifi cation, which is available in 
the DHS data but which we regard as a spatial variable. 

Model 4:  Model 2 plus spatial characteristics. Th ese include the urban-rural classifi -
cation, population density (taken as the natural log thereof ), rainfall (both 
linear and quadratic terms), distance to coast, and a three-category version 
of farming system.

Model 5:  Model 3 plus spatial characteristics. A comparison of this model with 
model 3 provides our best evidence of the additional explanatory value of 
spatial variables, above and beyond the standard model.

We now turn to a systematic discussion of the results in Tables 6 and 7.

4.3 Discussion
In Table 6, which gives the models for age 0, the country eff ects (expressed as ratios to 
Ghana’s infant mortality) largely become insignifi cant after the household and spatial 
characteristics have been included. In model 1, eight countries have signifi cantly (at 
the 0.01 level) higher infant mortality than Ghana, but by model 5 only three coun-
tries meet this criterion: Côte d’Ivoire, Mali, and Niger. Most of the change can be 
attributed to the addition of the spatial variables, as can be seen by comparing model 4 
with model 2 or comparing model 5 with model 3. Th e countries that change the most 
with the addition of these variables—that is, the countries whose higher mortality can 
be most strongly attributed to unfavorable spatial characteristics—are Burkina Faso, 
Cameroon, Guinea, Mali, and Niger. Th e eff ects for time periods are small in all models, 
although the second time period achieves a low level of signifi cance on some models.

Th e proximate determinants behave in ways consistent with well-established eff ects 
in the literature. In all models, males have about 17 percent higher mortality than fe-
males, children in multiple births are about 3.5 times as likely to die as singletons, 
second and later births have a risk that is 10 to 20 percent less than fi rst births, and 
children born when the mother is age 20 or above have a risk that is 25 to 30 percent 
less than when the mother is less than age 20. Th ese diff erences are all highly signifi cant, 
but are regarded mainly as controls here.

Th e eight household-level variables appear in models 3 and 5, and their coeffi  cients 
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Table 6
Log probability models for 1q0

Model 1 Model 2 Model 3 Model 4 Model 5

Country
Benin  1.5614**  1.4959**  1.2323**  1.3174**  1.1831*
Burkina Faso  1.7896**  1.7972**  1.3070**  1.1922#  1.1168
Cameroon  1.3156**  1.2707**  1.1900*  1.0187  1.0085
Cote d’Ivoire  1.8328**  1.7998**  1.6770**  1.7223**  1.6284**
(R)Ghana      
Guinea  1.7887**  1.7391**  1.3924**  1.3771**  1.2067#
Mali  2.1042**  2.0787**  1.6528**  1.3896**  1.3473**
Niger  2.1857**  2.1481**  1.5781**  1.4665**  1.3814**
Senegal  1.1434#  1.1667*  1.0112  1.1852  1.0477
Togo  1.3159**  1.2947**  1.0796  1.1466#  1.0421

Birth cohort      
(R)1987–1991      
1992–1996  0.9503  0.9489#  0.9369*  0.9502  0.9407*
1997–2001  0.9619  0.9547  0.9473  0.9535  0.9503

Sex of child      
(R)Female      
Male   1.1695**  1.1731**  1.1702**  1.1726**

Multiple birth      
(R)Single birth      
Multiple birth   3.4267**  3.5405**  3.4353**  3.5254**

Birth order      
(R)First birth      
Second birth   0.8458**  0.8055**  0.8262**  0.8048**
Third or higher birth   0.9036*  0.8041**  0.8507**  0.8016**

Mother’s age at birth      
(R)Younger than 20      
20–34   0.6931**  0.7417**  0.7242**  0.7452**
35 or older   0.7242**  0.7523**  0.7388**  0.7533**

Household water source      
(R)Piped      
Well    1.0772#   1.0418
Surface    1.081   1.0566
Other    0.9431   0.9309

Toilet facility      
(R)Flush toilet      
Pit toilet    1.3355**   1.3080**
No toilet    1.4462**   1.3461**
Other toilet    1.1869   1.197

Floor      
(R)Natural fl oor      
Finished fl oor    0.8621**   0.9011**
Other fl oor    0.7555   0.7498

Household assets
Electricity  0.9289  0.9744
Radio  0.9902  0.9916
Television  0.9311  0.952
Refrigerator  0.8557#  0.8492#

Mother’s education  
No education  
Some primary  0.916  0.9469
Completed primary  0.7756*  0.8205*
Some secondary or higher  0.6940**  0.7364**

Rainfall  
Average daily rainfall  1.1292#  1.0996
Rainfall squared  0.9887  0.9924

Residence  
(R)Rural  
Urban  0.7218**  0.8722**
Log density  0.9576**  0.9716#
Distance to coast  1.0005**  1.0003*

Farming system  
Tree crop  0.7835**  0.8127*
Fishing  0.976  0.9817
(R)Other  

Constant 0.0643** 0.0803** 0.0792**  0.0867**  0.0777**

Number of cases 122389 122389 118701 122389 118701
df 11 17 32 24 39
Log lik. -37485.04 -36551.4 -34776.94 -36286.14 -34722.08
Pseudo R2 0.01042 0.03507 0.04432 0.04207 0.04583

Note: The exponentiated coeffi cients are the relative risk of dying at age 0.
# signifi cant at one-tailed .05 level
* signifi cant at two-tailed .05 level

** signifi cant at two-tailed .01 level
(R) reference category
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Table 7
Log probability models for 4q1

Model 1 Model 2 Model 3 Model 4 Model 5

Country
Benin  1.3177**  1.2924**  1.0261  1.0739  0.9462
Burkina Faso  2.4616**  2.4319**  1.6759**  1.2546*  1.2008#
Cameroon  1.5199**  1.4802**  1.4491**  1.0359  1.0711
Côte d’Ivoire  1.4193*  1.3939*  1.3995*  1.3874**  1.4467**
(R)Ghana      
Guinea  1.8177**  1.7725**  1.3410**  1.2846#  1.0544
Mali  2.2881**  2.2293**  1.7616**  1.1622  1.1923
Niger  3.5445**  3.4371**  2.3779**  1.6650**  1.6014**
Senegal  1.4892**  1.4771**  1.2689**  1.3018#  1.1544
Togo  1.3124**  1.3014**  1.0322  1.0874  0.9566

Birth cohort      
(R)1987–1991      
1992–1996  1.0469  1.048  1.0341  1.0347  1.0331
1997–2001  1.4311**  1.4368**  1.3815**  1.4140**  1.3811**

Sex of child      
(R)Female      
Male   0.9938  0.9958  0.995  0.9953

Multiple birth      
(R)Single birth      
Multiple birth   1.5850**  1.6567**  1.6097**  1.6493**

Birth order      
(R)First birth      
Second birth   1.0998#  1.0449  1.0704  1.0469
Third or higher birth   1.2035**  1.07  1.1295*  1.0742

Mother’s age at birth      
(R)Younger than 20      
20–34   0.7473**  0.7929**  0.7806**  0.7916**
35 or older   0.7352**  0.7628**  0.7534**  0.7619**

Household water source      
(R)Piped      
Well    1.0742   1.0614
Surface    1.1258#   1.1516#
Other    0.7866*   0.7708*

Toilet facility      
(R)Flush toilet      
Pit toilet    1.3241#   1.3397*
No toilet    1.4539*   1.3721*
Other toilet    1.322   1.4098

Floor      
(R)Natural fl oor      
Finished fl oor    0.8963*   0.9308
Other fl oor    1.6601#   1.6629#

Household assets  
Electricity    0.7536**   0.7738**
Radio    0.9185*   0.9233*
Television    0.8943   0.8985
Refrigerator    0.8103   0.7882#

Mother’s education      
No education      
Some primary    0.8305*   0.8918
Completed primary    0.7485**   0.8122*
Some secondary or higher    0.5803**   0.6446**

Rainfall      
Average daily rainfall     0.9478  0.9141
Rainfall squared     1.0111  1.0174*

Residence      
(R)Rural      
Urban     0.6323**  0.8808*
Log density     0.9844  1.0105
Distance to coast     1.0006**  1.0004*

Farming system      
Tree crop     0.6810**  0.6976**
Fishing     0.9234  0.9389
(R)Other      

Constant  0.0530**  0.0588**  0.0647**  0.0835**  0.0732**

Number of cases  98249  98249  95381  98249  95381
df  11  17  32  24  39
Log lik.  -24513.11  -24443.8  -23332.5  -24170.9  -23272.65
Pseudo R2  0.0269  0.02972  0.045  0.04055  0.04745

Note: The exponentiated coeffi cients are the relative risk of dying at ages 1 to 4.
# signifi cant at one-tailed .05 level
* signifi cant at two-tailed .05 level

** signifi cant at two-tailed .01 level
(R) reference category
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are almost identical in those two models, although they are closer to unity in model 5 
because of some association with the spatial variables. Source of water is not signifi cant; 
type of toilet is highly signifi cant, with a fl ush toilet being by far the most benefi cial 
category;⁶ type of fl oor is highly signifi cant, with a natural fl oor being the least desir-
able type. We would hypothesize lower mortality for households with electricity, radio, 
television, or a refrigerator, but only the last of these four achieves signifi cance with 
a one-tailed 0.05 test. Finally, maternal education has a monotonic protective eff ect. 
Children whose mother had at least some secondary schooling have nearly a 30 percent 
advantage.

We can summarize the potential protective eff ect of the household-level variables 
by multiplying together the eight lowest values of these eight variables. For a child in 
the optimal category of every variable, the relative risk (compared with a child in the 
reference category of every variable) would be 0.9309 × 1 × 0.7498 × 0.9744 × 0.9916 
× 0.9520 × 0.8492 × 0.7364 = 0.4014. In contrast, a hypothetical child in the worst 
category of every variable would have a relative risk of 1.0418 × 1.3461 × 1 × 1 × 1 × 1 
x 1 × 1 = 1.4024. Th us, a convenient measure of the combined eff ect of these eight vari-
ables—irrespective of the choice of reference categories—is 1.4024 / 0.4014 = 3.4938. 
Th at is, a hypothetical child in the worst category of all eight household-level variables 
would have a fi tted value of ₁q₀ that is 3.49 times greater than for a hypothetical child 
in the optimal category of the eight variables, holding everything else constant.

Th e fi ve spatial variables appear in models 4 and 5. Th eir coeffi  cients are similar in 
those two models but are closer to unity in model 5 than in model 4 because of the as-
sociation with household-level variables. Rainfall is weakly signifi cant for age 0 in the 
absence of household-level variables; urban residence is highly benefi cial, as is higher 
density; infant mortality tends to increase with distance from the coast of Africa; and 
tree crops are the most advantageous type of farming system.

Density and distance to the coast are all interval-level variables. To give a better 
sense of their importance, we can calculate their eff ect on infant mortality at specifi c 
values. For example, the 10 percentile of the density measure is 16.7496 and the 90 
percentile is 374.9888. When converted to (natural) logarithms, giving a much better 
fi t, the 10th and 90th percentiles are 2.8184 and 5.9269, respectively. In model 5, the 
exponentiated coeffi  cient for the log of density is 0.9716. Th erefore, the relative risk 
for density is 0.9716²⁸²⁸⁴ = 0.9220 at the 10 percentile and 0.9716⁵⁹²⁶⁹ = 0.8430 at 
the 90 percentile. Both of these are the risk relative to ln(distance) = 0, i.e. distance = 
1. As in the above scenario comparing the best and worst scenarios of household-level 
factors, it may be more useful to compare the two ends of the density distribution. Th us, 
0.8430/0.9220 = 0.9143 is the risk of an infant death at the 90 percentile of the den-
sity distribution, relative to the risk at the 10 percentile. Th is is about a 9  percent re-
duction in the risk of an infant death. Given that these eff ects are over and above those 
of urban residence, which itself lowers the risk of death by 13 percent, we consider this 
eff ect to be substantial. 

Th e 10 and 90 percentiles of distance to the coast are 12.52742 and 892.0779, 
respectively. Going through the same steps as above, the risk of an infant death is about 
30 percent greater at the 90 percentile of the distance distribution than at the 10 
percentile. 

Now consider child mortality for age 1–4 as described in Table 7. Th ere are many 
similarities to the results for age 0, but some diff erences as well. Most of the country ef-
fects become insignifi cant by model 5, with the notable exceptions of Côte d’Ivoire and 
Niger, two of the three countries that were signifi cantly higher than Ghana in terms 
of infant deaths. Th e covariates introduced in models 2–5 have virtually no eff ect for 

⁶ Since children in this age group do not themselves use toilets, we interpret this variable as a 
proxy of the general hygiene and sanitation infrastructure of the household.
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Côte d’Ivoire; indeed, there is even a slight increase in its coeffi  cient as other variables 
are added. Th e third time period appears to have signifi cantly higher mortality, but we 
must interpret this coeffi  cient with care. Th e coeffi  cient is aff ected by the timing of the 
specifi c surveys and the increased censoring of the most recent time period as well as 
by possibly genuine trends in mortality, perhaps due to HIV infection.

Th e multiple birth and birth order eff ects are smaller for age 1–4 than for age 0, al-
though the birth order eff ect remains substantial and highly signifi cant. Multiple births 
have a relative risk about 60 to 65 percent higher than singletons, even after the eff ects 
of low birth weight and competition for the mother’s milk are largely past. Higher age 
of mother (at time of birth) continues to have a benefi cial eff ect, reducing the risk by 
20 to 25 percent. Th e child’s gender has no eff ect on survival beyond infancy.

Source of water becomes more important as the child is weaned. Surface water is 
clearly inferior to piped water. Th e class “other water,” however, is optimal, lowering 
the risk of death by 13 percent. Unfortunately, this classifi cation (1.5 percent of the 
sample) was used primarily in the Benin and Niger surveys and no additional informa-
tion was provided to aid interpretation (or to allow us to group these cases with other 
known water types). Anything other than a fl ush toilet increases the risk of death by 
about 32 to 45 percent (model 3). A fi nished fl oor is optimal and “other fl oor” (again, 
no interpretation or additional aggregation possible) is worst. Electricity is highly pro-
tective for age 1–4, although it was not for age 0; households with electricity have child 
mortality probabilities about 23 percent below households without it. Radio and re-
frigerator also have a protective eff ect.⁷ Mother’s education has an even more benefi cial 
monotonic eff ect for age 1–4 than for age 0. Th e fi tted probability of dying is about 
36 to 42 percent less for women with some secondary education. 

In the fi nal model, a hypothetical child in the optimal combination of the eight 
household predictors would have a risk of 0.7708 × 1 × 0.9308 × 0.7738 × 0.9233 × 
0.8985 × 0.7882 × 0.6446 = 0.2340, relative to a child in the reference combination. 
Another hypothetical child, in the worst combination, would have a risk of 1.0614 × 
1.3721 × 1.6629 × 1 × 1 × 1 × 1 × 1 = 2.4218. Th e ratio of the highest risk combination 
to the lowest risk combination is 2.4218 / 0.2340 = 10.3494. Th at is, the fi tted risk is 
more than ten times as great in the worst combination, compared with the best one. 
Th is is a much greater degree of variation than was found for age 0.

Of course, the household variables are to a large degree proxies for a whole package 
of characteristics representing standard of living, hygienic practices, and so on. Individ-
ual eff ects should not be taken completely at face value. For example, separate tabula-
tions show that more education and having a refrigerator are highly correlated, and the 
parents in households with refrigerators tend to have even more than “some secondary” 
education. Being able to preserve food safely is undoubtedly important for child sur-
vival, but households with refrigerators usually have many additional advantages.

Th e spatial eff ects for mortality during age 1–4 are somewhat diff erent than for age 
0. Urban residence is still protective, but higher density is not. Distance from the coast 
is highly signifi cant. Th e eff ects of climate and related agricultural production are more 
important determinants of death among children age 1–4 than among infants: Tree 
crops are the optimal farming system, with about 30 percent lower risk of death than 
the “other” category. Th ere is a signifi cant but nonlinear eff ect for rainfall. Th e coef-
fi cient for the quadratic term for rainfall is greater than one, which means eff ect of 
rainfall is curvilinear (concave).⁸ 

⁷ Th e correlation between ownership of a television and electricity is 0.627—the highest 
of pairwise correlation among these four variables—suggests that it may be overspecifi ed to 
include both in the model.

⁸ Th e survival analysis revealed signifi cant diff erentials by the malaria transmission index, 
which ranges from 0 to 38 in the study region. As noted above, the index is primarily a nation-
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Recall that because rainfall and growing season were so highly collinear we could 
not include both terms in the model. Instead, we ran the models replacing rainfall 
with growing season—a variable that might not pick up the eff ect of disease vectors, 
for example. Th e results (not shown in the tables) suggest that growing seasons under 
120 days have signifi cant negative eff ects on child mortality but not infant mortality. 
Children in the two shortest-season areas, that is in the arid and semiarid range, had 
15 percent and 12 percent higher risk of death than children in the optimal range.⁹ Th e 
risk of death was not higher for children in the wettest range (more than 10 growing 
months) although agricultural research indicates that growing seasons of this length are 
not optimal (FAO, 1978). When this variable is introduced in model 5 it also reduces 
the impact of the distance to the coast. While still weakly signifi cant, coastal zones in 
this region are wetter than interior areas, and this is accounted for more directly with 
the growing season data. Nevertheless, residual eff ects associated with coastal proximity 
remain.

4.4 Overall Effects and Interpretations
Th e Pseudo R² in our tables is calculated in the standard way as R² = 1 – (LLm / LL0), 
where LLm is the log of the likelihood function for the specifi c model and LL0 is the 
log of the likelihood function for the null model, which has no covariates and is re-
stricted to exactly the same cases that appear in the specifi c model. It can be interpreted 
as the proportion of the total deviance that is explained by the covariates in the model. 

Th e overall eff ect of the household-level variables can be measured by the increase in 
Pseudo R2 when model 3 is compared with model 2, or when model 5 is compared with 
model 4. Similarly, the overall eff ect of the spatial variables is shown by the increase 
when model 4 is compared with model 2, or when model 5 is compared with model 3. 
We will not list these diff erences numerically, but it can easily be seen that the overall 
eff ect of both sets of variables is generally small for both age 1–4 and age 0. As a set, the 
spatial variables appear most important when they are added to model 2 for age 1–4; 
the Pseudo R2 for model 4 is increased by 0.04055 – 0.02972 = 0.0108, about 1 percent 
of the total deviance. Th e overall eff ect of the household variables is greater in every 
such comparison, which is consistent with the discussion of the levels and signifi cance 
of coeffi  cients.

Th e urban-rural distinction, as noted before, has been included as a spatial charac-
teristic for conceptual reasons but is actually available in the DHS surveys and would 
often be grouped with what we have called household characteristics. Much of the 
importance of the spatial variables can be attributed to this inclusion. Further, model 5 
does not account for distance to nearest populated settlement or interaction terms be-
tween urban residence and density; for example, to consider the possibility that urban 
proximity is not a uniform eff ect (e.g., interurban high-density residence may increase 
the risk of death). Some of these possibilities were entertained separately and are shown 
in Table 8. When the interaction of density and urban residence is considered, urban 
residence loses its signifi cance and urban density lowers infant mortality (but not child 
mortality). Th e further an infant lives from a city of moderate size, the greater the risk 

al-level composite (Kiszewski et al., forthcoming), thus it was removed from the multivariate 
model. Nevertheless, had it been included in model 1 (not shown), mortality would be shown to 
raise the risk of an infant death (1.005) and child death (1.007), respectively. Th ese eff ects were 
not sustained, as additional variables are entered, and produced some confounding eff ects at the 
country level, indicating that more evaluation of the variable or its specifi cation is needed and 
that the coeffi  cients should be interpreted with caution.

⁹ Th e optimal cutoff  of 70 days for arid was not possible given the original classifi cation of the 
data, so the data were classifi ed as 0–90 for arid and 91–120 for semiarid. Th e reference category 
was a growing season of 120–240 days. 
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of death; however, this eff ect is not observed for children age 1–4. Th e eff ect is elimi-
nated if it is entered along with the dichotomous urban-rural variable and population 
density. While this approach is far from satisfying in terms of explaining the continuum 
of urban-rural phenomena, alternatives are not intuitive. Not shown is the substitution 
of the urban-rural and density variables in model 5 with a series of rank-order variables 
of urban-density and rural-density classes. Th e risk of infant death is greatest in the 
sparsest and most dense rural areas and higher in all rural areas than in urban areas. In 
urban areas, the risk of infant death is lowest in the densest areas. Th e eff ects on chil-
dren are not noteworthy. While this part of Africa is not known for having high density 
urban areas, it is somewhat surprising to fi nd that density diff erences have no eff ect on 
children’s mortality in urban and rural areas.

Th e coastal eff ect is another one of the robust spatial variables predicting infant 
and child deaths. Th e eff ect was also found to be important in economic development 
(Sachs et al., 2001) because, it is argued, coastal zones tend to be advantaged in their 
ability to transport goods, services, and ideas. Th e coastal countries in this study tend to 
have a higher gross domestic product (GDP) per capita—regardless of whether GDP is 
measured by purchasing power parity (PPP) or otherwise—than the landlocked coun-
tries, Burkina Faso, Mali, and Niger (see Table 9). Because country is also controlled for 
here¹⁰ and because the distance to coast measure is continuous, the impact of coastal 
proximity may be interpreted as an inter- and intranational access measure, above and 
beyond country-level economic development. Th at is to say, interior dwellers in coastal 
countries are at greater risk of death than their coastal counterparts. No subnational 
level income or GDP measures are available, but it may be that in coastal countries the 
coastal zone is disproportionately well off . 

4.5 Lessons from Extreme Cases
As a way of highlighting the extremes in the probabilistic distribution of death, we 
identifi ed from model 5 above the 1000 cases with the highest and lowest probability 
of death for infants and children. Table 10 shows the percentage of cases by selected 
variables. We found extremely high Pearson’s chi-squared values for each of these cross-
tabulations (all with p < 0.000) indicating that these extreme cases diff er signifi cantly 
from each other and from the remaining cases in the dataset. 

Table 8
The relative risk of dying at 1q0 and 4q1: variations on urban-type vari-
ables in model 5
Variable A B C D E

1q0  

Urban 0.857** - 0.818 - 0.875**
Density (ln) - 0.964* 0.966+ - 0.977
Density (ln) × urban - - 1.015 - -
Distance to populated place - - - 1.001* 1.000
Density (ln) × distance - - - - -

4q1 

Urban 0.886** - 1.085 - 0.876**
Density (ln) - 1.004 1.027 - 1.002
Density (ln) × urban - - 0.953 - -
Distance to populated place - - - 1.000 1.000
Density (ln) × distance - - - - -

Note: All other variables in model 5 are controlled for here, but in none of these models is model 5 
exactly replicated.
+ p < 0.10
* p < 0.05

** p < 0.01
*** p < 0.001

The further an
infant lives from a 
city of moderate 
size, the greater 
the risk of death; 
however, this effect 
is not observed for 
children age 1–4. 
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Table 9
National-level indicators for the study region

Population indicators Poverty indicators DHS health indicators

Popula-
tion, 2003 
estimate 
(in mil-
lions)1

Population 
growth 

rate, 2003 
estimate2

Life ex-
pectancy, 

2003 
estimate2

Fertility, 
2003 esti-

mate2

GDP per capita3

GDP growth 
(Average An-
nual Growth 
1990-2000)4

Poverty 
(percentage 

of population 
below poverty 

line, 2001)2

Poverty (Gini 
index: Distribu-
tion of family 

income [year])2

HIV preva-
lence, adults 
15-49 years 

(end of 
2001)5

Malnutrition 
(weight-

for-height 
< –3 SD)6

Vaccination 
coverage6, 7

Use of 
health 
services 
(assisted 

delivery6, 8)

Year 
of DHS 
survey

2001 
estimate

2001 est. 
expressed

as PPP

Benin 7.0 2.95 51.0 6.30 368 980 4.7 37 u 3.6 1.7 59.0 72.9 2001

Burkina Faso 13.2 2.60 44.5 6.34 215 1,120 4.9 45 48.2 (1994) 6.5 4.3 29.3 31.0 1998–99

Cameroon 15.7 2.02 48.0 4.63 559 1,680 1.7 48 47.7 (1996) 11.8 0.8 29.4 58.3 1998

Côte d’Ivoire 17.0 2.15 42.7 5.51 634 1,490 3.5 37 (1995) 36.7 (1995) 9.7 1.0 50.7 47.1 1998–99

Ghana 20.5 1.45 56.5 3.32 269 2,250 4.3 31 (1994) 40.7 (1999) 3.0 1.7 62.0 44.3 1998

Guinea 9.0 2.37 49.5 5.90 394 1,960 4.3 40 (1994) 40.3 (1994) u 2.9 32.2 34.8 1999

Mali 11.6 2.82 45.4 6.66 239 810 3.8 64 50.5 (1994) 1.7 1.9 28.7 39.0 2001

Niger  11.0 2.71 42.2 6.91 175 890 2.4 63 (1993) 50.5 (1995) u 3.7 18.4 17.6 1998

Senegal 10.6 2.56 56.4 4.93 476 1,500 3.6 54 41.3 (1995) 0.5 u u 46.6 1997

Togo 5.4 2.37 53.4 4.97 270 1,650 2.3 32 (1989) u 6.0 2.1 30.8 50.5 1998

1 IPC
2 CIA Factbook, available at http://www.odci.gov/cia/publications/factbook/geos/bn.html
3 UN Human Development Report Offi ce, available at http://www.undp.org/hdr2003/indicator/indic_111_1_1.html
4 2002 World Development Indicators, available at http://www.worldbank.org/data/wdi2002/pdfs/table%204-1.pdf
5 UNAIDS/WHO
6 ORC Macro, MEASURE DHS+ STATcompiler
7 Children who are fully vaccinated are those who have received BCG, measles, and three doses of DPT and polio (excluding polio 0).
8 Doctor or trained midwife/health professional
PPP = Purchasing power parity
u = Unknown (not available)
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Infants with a high predicted probability of dying were disproportionately located 
in Mali and Niger (77 percent of high-risk cases, compared with 33.7 percent of the 
full sample). All were multiple births, nearly 80 percent were third or higher birth or-
der, and 70 percent were males. Almost all (93.8 percent) were born to mothers with 
no education. Few infants (under 3 percent) were born into households with ameni-
ties such as electricity or television. Factors related to diff erences in environment and 
proximity to urban or coastal areas are substantially diff erent in infants with a high 
probability of dying. In particular, these infants tend to live in dry zones far from both 
coastal and urban areas. Nearly half were born into areas with low annual rainfall, virtu-
ally all were born into areas more than 200 kilometers from a coastline (99.4 percent), 
and two-thirds were born more than 50 kilometers from a populated place. Moreover, 
nearly 80 percent of these infants live in sparsely populated areas (fewer than 50 per-
sons per square kilometer). Of all infants with a high predicted probability of death, 
44.8 percent in fact died. 

Infants with a high probability of survival, conversely, were not as geographically 
concentrated, with no country having a disproportionate number of these cases. More-
over, these cases are more dispersed among clusters; whereas fi ve clusters in Mali and 
two clusters in Niger had eight or more infants with high probability of dying, no 
cluster had more than fi ve infants with high probability of survival. Very few cases 
with high probability of survival were multiple births, and only 41.1 percent were male. 
Infants with a higher probability of survival tend to be more coastal and more urban 
than the full sample; however, these diff erences are not as marked. Frequencies of cases 
with household amenities are also slightly higher than the full sample. None of these 
1000 cases died.

Like infants, children 1–4 who are at high risk of death are geographically concen-
trated, with 78.1 percent of all cases found in Niger, and none found in Benin, Ghana, 
Senegal, and Togo. Moreover, these cases are concentrated in clusters, with 10 percent 
of all cases found in seven clusters in Niger. Environmental and spatial factors also ap-
pear to aff ect infants and children in the same way. Nearly all live more than 200 kilo-
meters from a coast, and virtually none (0.2 percent) live in areas of moderate or higher 
population densities (150 or more persons per square kilometer). (However, chances of 
survival are not similarly linear: for children 1–4, survival is more likely at either the 
highest or lowest densities.) Low maternal education is also prominent among children 
with high predicted probability of death, with nearly all (97 percent) of these children 
being born to mothers with no education and none being born to mothers with second-
ary or higher education. Diff erences in household amenities are especially pronounced, 
with virtually none of these children living in households with a television, refrigerator, 
or electricity. Of these 1000 children, 39.1 percent died.

An examination of these extreme cases serves primarily to confi rm the fi ndings of 
the more thorough analysis above. Diff erences in proximate determinants such as sex 
and birth order are more pronounced in the infant analysis, while diff erences in house-
hold characteristics are more pronounced in the child analysis. Diff erences in maternal 
education are prominent throughout. Th e spatial characteristics of these extreme cases, 
however, provide some unique insights into the role of spatial factors in infant and child 
mortality. While cases with extremely high probability of dying are contained in a rela-
tively compact area of southern Niger and Mali, cases with low probability of dying are 
less concentrated and more coastal. Cases (both infants and children) with particularly 
high probability of dying are notably not urban.

Infants with a high 
predicted prob-
ability of dying were 
disproportionately 
located in Mali
and Niger. All were 
multiple births.

¹⁰ When country is omitted from model 5 (not shown) the eff ects of coastal proximity are 
raised to risk ratios of 1.0004 and 1.0006 for infants and children, respectively.
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Table 10
Profi les of extreme cases
The 1,000 cases with the lowest and highest predicted probability of dying

Infants (1q0) Children (4q1)

Variable
Most likely 
to survive

Most likely 
to die

Most likely 
to survive

Most likely 
to die Total

Died 0.0 44.8 0.0 39.1 8.4

Country
Burkina Faso 6.8 4.6 9.8 3.9 9.6
Benin 8.4 3.3 8.3 0.0 8.5
Côte d’Ivoire 2.4 3.0 4.1 0.3 3.2
Cameroon 8.4 0.5 7.0 0.6 6.4
Ghana 7.4 0.0 8.7 0.0 5.4
Guinea 10.0 10.0 10.0 1.3 9.8
Mali 17.6 47.5 20.8 15.8 21.2
Niger 8.9 29.5 2.8 78.1 12.5
Senegal 17.8 0.8 15.9 0.0 11.9
Togo 12.3 0.8 12.6 0.0 11.5

Birth cohort
1987–1991 0.0 25.5 0.0 14.5 24.9
1992–1996 2.7 49.4 16.2 18.1 50.8
1997–2001 97.3 25.1 83.8 67.4 24.3

Proximate determinants
Male child 41.1 70.8 48.5 48.3 50.6
Multiple birth 0.8 100.0 1.7 50.1 3.7

Birth order
First birth 13.7 9.3 19.5 20.3 18.5
Second birth 17.4 10.9 17.6 13.6 16.3
Third or higher birth 68.9 79.8 62.9 66.1 65.3

Mother’s age at birth
Younger than 20 10.0 22.2 13.3 36.3 17.9
20–24 69.9 58.3 70.4 53.4 67.9
35 or older 20.1 19.5 16.3 10.3 14.3

Household water source
Piped 35.0 10.6 33.8 5.2 27.2
Well 50.5 76.3 50.6 85.3 56.7
Surface 12.0 12.2 13.8 9.1 14.2
Other 2.5 0.9 1.8 0.4 1.9

Household assets
Electricity 25.2 2.5 24.6 0.1 16.3
Radio 66.0 52.1 66.7 30.1 61.7
Television 20.0 2.8 21.6 0.2 13.2
Refrigerator 11.3 0.5 10.9 0.0 5.9

Mother’s education
No education 66.1 93.8 66.3 97.0 76.5
Some primary 12.3 5.6 13.7 2.4 11.3
Completed primary 5.5 0.4 5.1 0.6 4.2
Some secondary or higher 16.1 0.2 14.9 0.0 8.0

Rainfall (quintiles)
First quintile (dry) 27.2 49.8 19.8 88.6 27.4
Second quintile 19.1 19.8 24.0 8.6 22.8
Third quintile 22.8 16.6 26.9 1.2 25.3
Fourth quinitle 14.3 6.4 13.5 0.5 10.8
Fifth quintile (wet) 16.6 7.4 15.8 1.1 13.8

Urban 32.2 6.3 33.0 4.1 25.1

Population density (ln) (quintiles)
First quintile (dispersed) 19.7 41.7 21.2 32.4 23.8
Second quintile 18.2 36.4 22.3 27.4 23.2
Third quintile 15.6 13.5 15.7 27.6 17.3
Fourth quinitle 19.5 5.9 15.4 12.4 17.2
Fifth quintile (concentrated) 27.0 2.5 25.4 0.2 18.5

Distance to coast (quintiles)
First quintile (coastal) 27.0 1.6 25.3 0.3 18.8
Second quintile 18.6 2.7 15.9 0.5 14.8
Third quintile 16.8 13.6 20.4 1.0 18.4
Fourth quinitle 20.3 30.3 26.0 14.3 25.1
Fifth quintile (inland) 17.3 51.8 12.4 83.9 23.0

Farming system
Tree crop 12.7 0.6 11.4 0.0 8.2
Coastal fi shing 10.6 1.1 11.5 0.3 9.2

Note: Chi-squared values for each of these cross-tabulations are highly signifi cant (p < 0.000).
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Although country-level mortality ranges from 61 to 135 and from 52 to 130 per 1000 
live births for infants and children respectively (in the 10-year period surveyed in each 
country), the impacts of most country-level diff erences become insignifi cant when 
household and spatial characteristics are included. Th e notable exceptions are Côte 
d’Ivoire and Niger, for which the risk of infant and child deaths remains signifi cantly 
higher, as well as Mali for infant deaths. Spatial factors (e.g., proximity to urban areas, 
population density, farming systems), which appear to have an overall modest eff ect on 
both infant and child mortality, especially when the usual demographic and household 
characteristics are included, explain away a good deal of the country-specifi c variation 
in mortality. Th e improved defi nition of spatial factors may alert policymakers to ad-
dress geographic parameters such as providing services to areas further from the coast.

Th e eff ects of proximate determinants (e.g., multiple births, birth order, sex, and 
mother’s age) are consistent with fi ndings often cited in the literature, specifi cally that 
they act more strongly on the risk of infant death than on the risk of child death. Simi-
larly, household-level variables, including maternal education and housing quality, play 
an important role in the determination of both infant and child survival. Our estimates 
suggest that infants and children living in the most disadvantaged conditions (e.g., 
those whose mothers have no schooling, whose households do not have fl ush toilets 
or electricity, and who obtain drinking water from surface sources) are at risk of death 
3.5 and 10.4 times that of infants and children, respectively, living in the most optimal 
conditions (e.g., those with mothers having at least some secondary schooling, piped 
water for drinking, and fl ush toilets), holding all else constant. Th e spatial variables are 
associated with household characteristics and may have an indirect eff ect mediated 
through these characteristics. A meaningful future analysis would be to explore the 
degree to which household characteristics are themselves determined by the physical 
environment. In the meantime, results from the present analysis suggest that policy 
eff orts to reduce infant and child mortality should incorporate programs to increase 
mothers’ education and improve household sanitation. 

Population density and distance from the coast are signifi cant determinants of in-
fant and child mortality even when urban residence, which lowers the risk of death by 
12–13 percent, is considered. Th e risk of infant death is about 30 percent greater at the 
90 percentile of the coastal distance distribution than at the 10 percentile, and the 
relative risk is somewhat greater for children far from the coast. Tree crops were found 
to be the optimal farming system, with about 30 percent lower risk of child death than 
other systems; the impact was smaller—only 20 percent lower risk—on infants, again 
suggesting the greater importance of environmental factors for children than for in-
fants, who are protected from some environmental eff ects, for example through breast-
feeding. A direct and consistent eff ect of rainfall was not found, but it was determined 
that children living in areas with the shortest growing seasons, classifi ed as arid and 
semiarid, had 15 percent and 12 percent higher risk of death, respectively, than children 
in the optimal range. No eff ect was found on infants.

5Conclusions

The impacts of 
most country-level 
differences become 
insignifi cant when 
household and spa-
tial characteristics 
are included.
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Finally, a set of extreme cases—the 1000 cases with highest and lowest probabilities 
of death—were examined to fl esh out some of the complexities in the full model, es-
pecially with regard to spatial characteristics. Cases with extremely high probability of 
dying were found to be contained in a relatively compact area of southern Niger and 
Mali, whereas cases with low probability of dying were less concentrated and more 
likely to be coastal. Notably, infants and children with particularly high probabilities of 
death were also found to be located in sparsely populated and nonurban areas. Survival 
chances for children, however, were greatest in the most dense and least dense areas, 
which suggests that the infl uence of population density on child death and survival is 
complex and bears additional consideration.

Suggestions for Further Research
In addition to determining how spatial variables impact household characteristics, as 
mentioned above, future studies should strive to optimize spatial information. For ex-
ample, urban and climate variables can be classifi ed into subcomponents that provide 
more insight. A dichotomous urban-rural variable is complemented by specifi c infor-
mation on population density and distance to urban center; climate variables refl ecting 
rainfall, growing seasons, and farming systems are important in the assessment of the 
eff ects of disease transmission and food production on mortality. But how these vari-
ables should be optimized—that is, combined, interacted, and transformed—depends 
on theoretical and statistical concerns beyond those that were considered here. 

Th ere are several reasons to both widen and narrow the geographic scope of this 
study.¹¹ Including countries with a wider range of physiographic features would facili-
tate comparisons that we could not undertake here. For example, elevation is thought 
to be an important component of malaria transmission in Africa, although in this study 
region there would have been little variability to evaluate. Including one additional 
country, Nigeria, would also provide a more complete regional picture. With more than 
100 million inhabitants, Nigeria’s population is comparable in size to that of the entire 
region studied, and it is nearly surrounded by these countries. Results for the 2003 
Nigeria DHS survey were unavailable at the time of this study, but any future studies 
should include it. 

Th e geographical scope may be narrowed to more precisely detect variations within a 
country. Because there are large diff erences (e.g., in population density or rainfall) over 
a large area, some of the eff ects within a country may be overpowered by the intercoun-
try emphasis here. Comparative country-level studies would facilitate a more systematic 
assessment of hypothesized interactions between spatial and household characteristics 
as well as among spatial characteristics. Furthermore, questionnaire design for a single 
country may include country-specifi c covariates that are not necessarily comparable 
across multiple countries. Th erefore, important covariates, such as partner’s occupation, 
that could not be used in the present study could be included in single country studies.

Future survey implementation may also benefi t by incorporating additional geo-
graphic concerns in the sampling frame. Currently, surveys are representative within 
political regions, but not other geographic regions.¹² To the extent that particular geo-
graphic parameters are believed to be important, oversampling in some places, such as 
hyperarid zones, could be a valuable undertaking. At the least, future studies incorpo-

¹¹ It is important to recognize and attempt to reconcile diff erences in variable coding so as 
to lose as few covariates as possible. While in-country survey implementation teams may have 
an interest in making their surveys as country specifi c as possible, it may be possible post hoc 
to determine complementarities across surveys for the purpose of relative ranking (e.g., best to 
worst condition).

¹² Some older DHS surveys such as Burundi 1987 and Côte d’Ivoire 1994 used environmen-
tal regions aggregated from small administrative units.

Population density 
and distance from 

the coast are signifi -
cant determinants 
of infant and child 

mortality even when 
urban residence, 

which lowers the 
risk of death by 

12–13 percent, is 
considered.



37Conclusions

rating distinct geographic zones should take care to ensure that the sample sizes in the 
various classes of zones are suffi  cient to generate robust results. 

Future work should attempt a more systematic examination of the spatial patterns of 
mortality and its determinants. Th is analysis has confi rmed spatial and nonspatial risk 
factors, but it came short of examining cluster-level or fi ne-scale spatial patterns. Th is 
was not attempted in the current analysis because of concerns over using the cluster 
as a unit of analysis. Additional statistical work and consideration of sampling issues 
would clarify the feasibility of this approach. Spatial statistical programs are becoming 
increasingly sophisticated, perhaps accelerating this line of inquiry.

Another matter of spatial concern is access to resources. To assess a country’s quality 
and coverage of health care services, DHS has begun collecting data, including geo-
graphic location, on health facilities in its service provision assessment (SPA) surveys. 
Th e SPA includes a nationally representative sample of health facilities, including na-
tional- and provincial-level hospitals, health centers, and dispensaries managed by the 
government or by NGOs. (Although the samples have until now excluded privately 
run, for-profi t pharmacies and clinics, it has been proposed to include them in future 
SPAs.) Information is collected from service providers and clients at these facilities 
on facility infrastructure, specifi c child health, family planning and maternal health 
services, and services for sexually transmitted diseases and HIV/AIDS. Th is is a po-
tentially rich source of data on provision of national health care that could be linked to 
household survey data where both types of data are georeferenced. In some countries, 
health facilities data may be available from other sources. Senegal, for example, through 
its Averted Maternal Deaths and Disability (AMDD) program (Moreira et al., n.d.) 
collects spatial information on all hospitals (government and private) and their service 
provision levels; and some countries have georeferenced some or all of their health 
facilities (e.g., Namibia, Malawi), which may provide indicators of subnational levels 
of service availability. Using such data in connection with DHS surveys might be a 
valuable exercise.¹³ 

Similarly, other physical datasets may be of interest for future work in addition to 
some of those mentioned above (e.g., land use or land cover). Th e Total Ozone Map-
ping Spectrometer aerosol index, which measures dust, could provide other correlates 
of mortality, especially in arid regions where dust is especially problematic. Model data 
sets for some disease vectors other than malaria may also be considered. 

Finally, the geographic variables in this study were static, relating to one time period, 
while the surveys themselves were carried out over a fi ve-year period and provide data 
about births from a fi fteen-year period (1987–2001). Data such as rainfall and the 
Normalized Diff erence Vegetation Index (NDVI) are reported on a monthly basis, so 
that a location- and period-specifi c average rainfall could be calculated for each child in 
the survey. Or, more modestly, country-specifi c rainfall datasets could be calculated av-
eraging over the ten-year period preceding each survey. Other data such as population 
density could be projected backwards in time to account for national decadal growth 
rates of 25–40 percent in the region in the 1990s to generate a more accurate estimate 
of population density at the time of the survey. Using time-varying data would require 
slightly diff erent multivariate models than the ones pursued here, but it is a direction 
worth pursuing. 

¹³ In connection with use of health service data, it would be informative to know more about 
the nutritional status and health care seeking behavior of children who died. However, the lo-
gistics of collecting this data and the potentially poor quality of the retrospective information 
may outweigh the benefi ts.
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